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CHAPTER I 

INTRODUCTION 

Fracture mechanics, the study of failure mechanisms 

and the development of failure prediction criteria for en- 

gineering structures, focuses considerable attention on 

the stress distribution in the neighborhood of a crack em- 

bedded in an elastic body.  The intensity of the elastic 

stress field around the tip of a sharp crack plays a domi- 

nant role in fracture analysis.  Irwin (1) showed that the 

Griffith (2) fracture theory, originally based on energy 

considerations, is equivalent to an approach using the con- 

cept of crack-tip, stress intensity factors.  The basic 

idea of the combined theory is that the crack propagates 

under static load when the stress intensity in the region 

near the crack tip reaches a certain critical value, say 

K .  For a given material the combination of crack size 

and loading at incipient fracture results in a stress in- 

tensity factor equal to K .  When the load or crack size 

is kept below this threshold point, the severity of the 

crack tip is measured by the "stress intensity factor" K 

which assumes the general form 

K = o, «Y* VTT 
a 

This K factor is a quantity determined analytically or 
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experimentally and varies as a function of the crack length 

a,  the crack configuration and external geometry factor y, 

and the manner in which the internal loads or far field 

stresses a_ are applied.  Successful application of the 

theory requires that the crack tip plastic zone size be 

small compared to the crack dimensions.  This permits the 

use of elasticity theory to determine the stress intensity 

factors. 

As a rule, the crack-tip stress state in a structural 

component must be described by at least two parameters, say 

K- and KTI.  K,. corresponds to Mode I loading which pro- 

duces symmetric stress states near the crack tip and KT1 

stands for the amplitude of the skew-symmetric portion or 

Mode II loading.  The criterion of fracture now requires a 

combination of Kj and KT_ reaching some critical value, i.e. 

F (Kj, KIX) = Fc 

If the stress state is triaxial in nature, a third parameter 

KTII is usually required and the fracture criterion must 

be modified accordingly. 

Common experience indicates that a crack follows a 

path in a structural component as dictated by the stress 

field.  At each instant, the direction of crack propagation 

depends on the energy state and the material properties in 

a region ahead of the crack tip.  It is of utmost importance 

"•-'-•»•- ---—••    . .   ....,..••.  ~—^„.J 
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to be able to predict the direction of crack initiation. 

One common method used to predict crack growth which 

may be useful in mixed mode problems is the criterion of 

maximum strain energy release rate.  The strain energy 

release rate^ represents the amount of energy released 

during an incremental increase in crack area.  The critical 

strain energy release rate criterion and the K criterion 

can' be related.  For specimens subject to Mode I loading, 

&  equals C,  I where C, is a constant depending on whether 
E        * 

the body is in a state of plane stress or plane strain. 

Analytical problems for the stress intensity factors 

are available for a number of crack geometries and boundary 

configurations (3-11).  The largest class of solved prob- 

lems apply to the conditions of Mode I and II loading for 

states of plane stress or plane strain.  A large complement 

of mathematical methods have been used to seek solutions 

and are reviewed in (9,10).  The major analysis techniques 

used for K calculations are complex variable, conformal 

mapping, Green's function, Riemann-Hilbert problem, Wiener- 

Hopf method, singular integral equations, and asymptotic 

approximations.  Authors utilizing these methods have pro- 

duced hundreds of solutions many of which are tabulated in 

(11).  Analytical solutions for three-dimensional cracked 

bodies are more limited, generally restricted to the penny- 

shaped and elliptical crack geometry. 

Analytical solutions for K factors, although large 

_•*. vr... ... fc«  ....,^-...„,^- -•     ...... . .-...^ ..v^.,        •••  ..-.*,-.,.... 



in number, do not fully satisfy the designer's needs when 

analyzing complex structures.  The presence of stiffeners, 

irregular geometries and complex boundary loadings often 

complicate the real problem.  Thus considerable attention 

has been focused on numerical methods particularly finite 

element techniques. 

Early studies of fracture mechanics problems involv- 

ing the finite element method have been carried out by 

Swedlow(12), Tuba (13), and Watwood  (14).  They attempted 

a straightforward application of the technique with no 

special attention given to the stress singularity.  The 

specimen was conceptually divided into finite elements with 

a relatively high eler^nt concentration near the crack tip. 

Computational experiments indicated the need to include a 

very large number of degrees of freedom in order to obtain 

reasonable accuracy (12-14).  The numerical value of the 

stress intensity factor, determined in this manner, varies 

over a considerable range, depending upon which node is 

chosen for its calculation.  Further study of this technique 

(15,16) concerns questions about its convergence, reliabil- 

ity, and convenience. 

In an attempt to eliminate some of these undesirable 

features, an alternative approach has been developed by 

Wilson and others (15) and extended by Oglesby and Lomacky 

(16).  They directly incorporated both the finite element 

method and the analytical crack tip expansions to form a 

•   • ••     — -iam iMirtaiBii     iMMii' 1 [ i '•   fihit—••---«->«>-• -     ..,Ju.~i.-«i^. .-,—^  imtifrnttokltHk 



a 
special singular crack tip element.  This element centered 

at the crack tip, has the deformation field given by the 

elastic singular solution, with the stress intensity factors 

and crack tip displacement components as the parameters 

characterizing its behavior.  The crack tip element is con- 

nected to standard elements along its boundary, by requir- 

ing the nodal displacement components on this interface to 

be consistent with the crack tip solution.  Finite element 

results for complicated geometries using special cracked 

elements are believed to easily give accuracy within 2-3% 

(17). 

Evaluation of stress-intensity factors will, in most 

cases require a numerical attack due to the complicating 

factor of geometry.  The boundary integral equation (B.I.E.) 

technique is a numerical method particularly suited to the 

stress analysis of simply or multiply connected homogeneous, 

elastic bodies. 

The method as developed by Rizzo(18) exploits the 

strong analogy between potential theory and classical 

elasticity theory.  Unlike Jaswon(19) Rizzo's approach is 

not limited to two-dimensions and works directly with as- 

signed boundary quantities instead of stress functions. 

This approach depends on the knowledge of the singular sol- 

ution to the Navier-Cauchy elasticity equations in two- 

dimensions corresponding to a concentrated force.  The 

singular solution gives rise to a vector identity similar 

nmtaTiti li--"--—•••* -liTifuMtr» lir - 



to Green's third identity for Laplace's equation.  Taking 

the field point to lie on the boundary contour, a boundary 

formula is obtained which gives a relation between boundary 

displacements and corresponding boundary tractions.  Since 

either of these boundary quantities, in principle, deter- 

mines the other, the formula provides a constraint between 

them which generates a set of simultaneous integral equa- 

tions involving the unknown boundary data.  The reduction 

to a problem involving only the boundary surfaces reduces 

the dimensionality by one and has no requirement for dis- 

cretization of the region contained within the boundary 

surface.  This reduction in dimensionality significantly 

reduces the computational requirements. 

This method has been extensively developed by Rizzo, 

Shippy, Cruse and Lee (20-28).  They have applied the B.I.E. 

method to the following class of problems; 1) elasto- 

dynamics, 2) three-dimensional elasto-static, 3) elastic 

inclusion, and 4) anisotropic elastic boundary value prob- 

lems .  At the present time application to cracked bodies 

is restricted to symmetric geometries which allow the prob- 

lem to be changed from a cracked body to a mixed boundary 

value problem with no cracks.  The unsymmetrical crack 

problem is excluded in Rizzo's formulation due to regular- 

ity requirements on the boundary surfaces.  These regular- 

ity conditions require that the body be finite, and smooth, 

and representable by unique parametric expressions. 

>. 
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Classical fracture problems require that the crack faces be 

defined to lie on the same contour and meet sharply at the 

crack tip.  These conditions violate the regularity require- 

ments upon which Rizzo's formulation relies. 

It is the purpose of this thesis to extend the Rizzo 

technique to permit its application to those crack problems 

lacking symmetry.  Chapter 2 presents the mathematical for- 

mulation of the B.I.E. for plane cracked bodies, while the 

solution technique is applied to a specific Mode 1, Mode II 

problem in Chapter 3.  Chapter 4 presents results and dis- 

cussion for two sets of problems.  The first set is for 

verification of the solution method and the second presents 

data for the bent crack.  Finally, Chapter 5 is concerned 

with conclusions and applications of the developed method. 

L^^ 



CHAPTER 2 

MATHEMATICAL FORMULATION 

Solutions of boundary value problems in fracture 

mechanics require the analysis of bodies containing mathe- 

matical models of crack-like flaws. The geometric modeling 

of these flaws generally result in configurations or geo- 

metries that are non-regular as defined in (29,30).  The 

basic integral equation formulation developed by Rizzo (18) 

requires that the body under consideration be finite and 

bounded by a single smooth contour C , the contour satis- 

fying certain regularity conditions (29).  One regularity 

condition requires that contour C possess a unique rep- 

resentation in the parametric form x = x (s).  A sec- 

ond condition is imposed on the surface derivatives x (s) 

which must be continuous.  The two crack faces in classical 

fracture problems are defined to lie on the same contour; 

thus, unique parametric representation of the individual 

surfaces is excluded.  The presence of a reentrant vertex 

at the crack tip, and the existence of sharp corners, 

where the crack intersects the outer boundary, violates 

the second regularity condition.  Section 2.1 presents a 

summary of the Rizzo formulation considering C to be 

regular. This permits solution of a class of problems ex- 

cluding the elastostatic crack problems arising in fracture 

.  ... «i. •—   rn ••,•.!— 
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mechanics.  The mathematical processes required to overcome 

these restrictions and to extend the B.I.E. method for 

solution of general crack problems are the subject of 

Section 2.2 

2.1 Basic Integral Equation Formulation 

The integral equation formulation presented in this 

section is restricted to the analysis of classical plane 

elastostatic problems for which the material may be taken 

1 2 to be isotropic and homogeneous ' .  The Navier displace- 

ment equations of equilibrium in the absence of body forces 

are given by 

lX +  H)ua,aß +»  Vaa = °   (a'3 = L'2) 

(2.1) 

where the displacement is denoted by u. (x )  while x 

are the orthogonal cartesian coordinates x,,x_ and A, p 

are the familiar Lame constants.  Eq. (2.1) formulated for 

problems of plane strain, may also embrace generalized 

plane stress with suitable exchange of material constants. 

The solution to this differential equation must also satis- 

fy the boundary conditions for the displacements and 

A more general formulation for the 3-D elastic prob- 
lem may be found in References 21,25,27. 

2 The formulation presented in this section is very 
similar to that of Rizzo(18).  It is presented here because 
it is the foundation for mathematical extensions germane 
to this thesis. 
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tractions on the contour C , given by 

uß (v • % 
and 

x~ e C 

r 0n = tfl (x )    xa e & aß a   $  a     a 
(2.2) 

1   2 where C , C are those portions of the contour subject to 

displacement-traction loading boundary conditions respect- 

ively.  The unit vector n is the outward normal vector 

for the body D with components n . 

The body under consideration will be assumed finite 

and bounded by a single smooth contour C, which, as 

described in (29) , admits a unique representation in the 

parametric form x = x (s).  Further, the derivatives 
a    a 

x'a(s) are assumed to be continuous. The parameter S 

is the arc length along the contour from some arbitrary 

origin. 

Figure 1 illustrates a simply connected body with 

closed contour C.  For the body (D + C) under the action 

of boundary tractions t ,  the relation 

fca " A up,B na+ ynß <ua,ß+ «W (2.3) 

must hold on C. 

The distance between field points Q with coordinates 

10 
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where 

Uß " üaß ea " ülß + ü2ß (2'5) 

Uaß 7    «aß1"1 r + M r'a r'ß 

and where ea are unit base vectors.  Eq. (2.5) satisfies 

Eqs. (2.1) in D, provided 

and 

3n" * ax"*1« = F (xa "5a)ria a 

11 

x and the source points p with coordinates %a   is given by 

r =  [(xa - 5a) (xa -Ca)]
1/2      (2.4) 

Then, concentrated forces of magnitude,  -47ru(A +2y)/(A +3p) , 

are applied at points p = p(£ ) in the x directions res- 
* 

pectively, giving rise to displacement vector  uß as 

defined by Love (31) 

'°'    M= -1h±^L (2-6) 

In Eq. (2.5) and in what follows, all differentiation 

is with respect to the field point x.  That is, 

r'a   3xa   r v a V 

1 • VilMiül 



where the normal is evaluated at xa also.  The traction 

* * vectors  fcg   on C corresponding to u^ are computed 

from Eq.(2.3) and may be written 

tD = T 0 e ß     aß a 
T   +  T il$    ±2ß (2.7) 

where 

and 

Taß=kLnr   tK6«ß  "4uMr'a  r'ß> 
+ K   [(Ln r),a nß-(Ln r) ,$ nj 

K =  2v/{\ +  3u) 

The vectorial form of Betti's reciprocal work 

theorem may be written 

/ 
(u T a  -  t U 0)dS = 0 a aß   a aß (2.8) 

C+m 

where dS is an element of arc length at Q and where the 

point p = p(£ ) of D has been excluded by a small circle 

m of radius  p because of the singular nature of U and 

T 0  for r = 0.  The vectors and their derivatives are 

taken to be non-singular and sufficiently continuous for 

the usual validity of the theorem.  These vectors corres- 

pond to an equilibrium stress state; body forces associated 

with U „  and T ß  are taken as zero.  It can be shown aß      aß 

12 



(18) that 

Lim 
P^o m 
/ fca % dS - 0, Lim 

p-*o 
/U  T a  a 
m 

ß ds = -2~1US(P) 

(2.9) 

where 

a =  (A+3y)/(4TTVi(A+2vO) 

Therefore, Eq. (2.8) yields 

«ß (P) »  £ /tUa (Q) Taß(p,Q) - ta (Q) Uaß(p,Q) ]dS(Q) 
c 

(2.10) 

which is the plane counterpart of Somigliana's identity (31) 

for the displacements inside the body, D, caused by surface 

tractions and displacements.  Eq. (2.10) is analogous to 

Green's third identity of potential theory which expresses 

a harmonic function in terms of the boundary values of the 

function and its normal derivative.  A parallel develop- 

ment using Green's third identity leads to the formulation 

of the Mode III problem. 

The properties of the integrals in Eq.  (2.10) as the 

boundary C is approached are necessary for the development 

of B.I.E. relating the displacements and tractions on C. 

The integrals present in Eq. (2.10) are 

Vp) =  /% (Q) Uaß<P'Q)dS' Vp) =  /Ua (Q) Taß(P'Q)dS 

13 



The  limits  as    p-*P    of  <J>. (p)     and \i>0 (p)     are  obtained by 
p p 

assuming the point P lies on a smooth contour. 

The second of these integrals yields 

Lim     Y   (p)    =   4»g(P)   =   v [K-2n  M]uß  +     J ua   (Q)   Taß(P,Q)dS 

(2.11) 

This result is readily verified provided u  is assumed to 

satisfy a Holder condition on C and provided the singular 

integral is evaluated in the sense of a Cauchy Principal 

Value (32) .  A similar limiting procedure for the first in- 

tegral gives 

Lim <J)g(p)H $  (P) 
p+P p     p •  /VQ) Ua3 (P,Q) dS 

(2.12) 

The integral equations relating the surface tractions 

to surface displacements are found from Eq.(2.10), to (2.12) 

Since 

ug(P)  =  at*3 (p> " VP)] (2*13) 

and 

an (K - 2yM)  =  1/2 

it results that 

ug (P) - 2 a fua   (Q) Tag(P,Q)dS(Q) 

= -2  a   ft i   a (Q) Uaß(P,Q)dS(Q) 

(2.14) 

14 
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1 

As shown by Rizzo (18), Eq. (2.14) will be regular 

according to the classification of singular operators by 

Muskhelishvili (32) for values of Poisson's ratio VJE[0,1/2). 

Given t_ on C, the traction problem, the two components of Eq. 

(2.14) form a simultaneous pair of integral equations for 

the unknown u .  The rigid body displacement vector 

uß (P) = aß + bea33 Ca(P) 

satisfies the homogeneous form of these equations, i.e., 

u3(P)-2 3/ua(Q) Tag(P,Q)dS(Q)= 0     (2.151 

c 

where aR and b are arbitrary constants.  Application of the 

Fredholm alternative yields 

k ß (Q) dS(Q) = ye33axß(Q) fca(Q) dS(Q) = ° 
c c 

(2.16) 

as the necessary and sufficient conditions for the solu- 

bility of Eq. (2.14).  These are, of course, the conditions 

that the body be in equilibrium. 

It should be noted that although the Fredholm alter- 

native was employed above, Eq. (2.14) is not a Fredholm 

integral equation, since the term 

T*   • K aß (Ln r),a n^-Un r) ,ßna 

is present in the kernel function T . .  More precisely, 

15 
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a 
Lim 
Q+P 

Q-P T*ß (P,Q) ft  0 

whereas a limit of zero is required for Fredholm kernels. 

Nevertheless, the index k in Muskhelishvili Chapter 19 (32) 

computed from T _ equals zero and the Fredholm alternative a£ 

is applicable. 

Given the u  on C, the displacement problem, the two 

components of Eq. (2.14) form a simultaneous pair of sin- 

gular integral equations for the unknown t on C. Rizzo 

proved in (18) that the homogeneous equations 

/ta(Q) Ua8(P,Q)dS(Q) = 0 

has no nonzero solutions.  Thus it may be expected that the 

displacement problem formulation of Eq. (2.14) results in 

unique solution t  on C for arbitrary U. on C. 

With the knowledge of u„= u0   on part of C and 
P   P 

(2) t = t  on the remaining part (mixed problem), a set of 

four equations on the unknowns ui  and t*   on C is ob- 

tained.  The mixed-mixed boundary value problem may also 

be formulated by extension of the above reasoning.  Evalu- 

ation of the displacement field (and subsequently the stress 

and strain fields) internal to the boundary C may be ob- 

tained through Eq. (2.10) from the boundary data given on 

all contours. 

16 
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2.2 Integral Equation Formulation for Cracked Plate 
Geometries 

In this section, the Boundary Integral Equation (B.I.E.) 

formulation necessary to solve elastostatic, edge cracked 
3 

plane problems is developed .  This formulation is restric- 

ted to traction loading, although displacement or mixed 

boundary conditions may be addressed with equal ease. 

Direct formulation of the Boundary Integral Equation 

1^.14) applied to edge crack geometry leads to an incomplete 

problem statement.  This shortcoming is caused by the inher- 

ent restriction that the complete contour of body D be des- 

ciibed by a unique parametric representation x = x0 (s).  The P  P 

upper and lower crack faces violate this condition.  The 

other restriction on the continuity of x' (s) must also be 
P 

addressed since a discontinuous change in (s) occurs at 

the crack tip, and may occur at the crack corners. 

The method is first illustrated for the case of a 

crack with Mode III loading, which is equivalent to the 

Dirichlet probleu. This classical problem (30,33) is formu- 

lated beginning with Green's third identity yielding the 

governing integral equation 

W(P) 
-*/' 

W(Q)• K(Q,P)dS(Q) = F(P) 

(2.17) 

3.  Throughout this thesis attention is restricted to edge 
crack problems.  However, the method discussed is appli- 
cable to internal crack geometries by reformulating Eq.(2.14) 
to account for multiply connected regions. 
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where: 

(P)  =hfjE Co/tarJdSte, 

3X az K<Q,P)H (x-xQ)|g + (3Mr0){S 
r-2 

ro "   Kx-xo)2  +   (y-yo)2] 

Eq. (2.17) relates the unknown displacement W in the z- 

direction to an applied shear load which is proportional to 

3W •5— (Q) on the boundary C.  Q and P are field and reference on 

points on the boundary C, and n is the unit normal at point 

Q, and x,y are the usual cartesian coordinates.  The deri- 

vation of Eq. (2.17) requires the same restrictions as im- 

posed on Eq. (2.14) pertaining to unique parametric repre- 

sentation of C and continuous surface derivatives x'(s). 

Because the Mode III governing integral Eq. (2.17) is 

simple and has similar mathematical behavior to the Mode I 

and II formulation it is selected for initial investigation. 

A simple Mode III B.V.P. is defined with geometry 

illustrated in Fig. 2.  It consists of a right-circular 

cylinder of radius R with a sharp 2ty    wedge cut out begin- 

ning at the center line of the bar.  The selection of an 

appropriate traction loading results in a closed form ana- 

lytical solution suitable for comparison with the integral 

equation results.  Analytical solution of the Mode III 

18 



problem begins with the definition of the usual cylindrical 

coordinates r,9,z with origin at the bar's center. The gov- 

erning differential equation is the classical 

where 

V W = 0 

W = W (p,6) P5
rA 

0  <    P<   1     ,     ip0i6£ 2TT-\JJ 

The boundary conditions are defined as, 

a) on the upper wedge face, 9 =\p 

y 1 aji = T =0 
"P 99    z 

b) on the lower wedge face, 9 = 2 IT -0 

c) on the circular boundary, P = 1 

9w _    uB    I •n(e-ü)   ) = TT = p cos)  v *o' 
P=l  Z    *      ) 2(lT-l|» ) 

Solution of the harmonic equation and satisfaction of the 

B.C. yields the following results for the boundary displace- 

ments 

a) on  9= ü> o 

b) on  9=  2TT-\J> 

c) on p   =   1 

W(p   4>)   = p B 

w(p,-n»0> =   -p 
B 

W(l,8)    =     cos   JB(9   -4   ) 

where B  -  7r/2(ir  -i|»0) 
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Integral Eq. (2.17) is formulated for a modified cir- 

cular wedge geometry.  The crack tip and crack corners are 

rounded with circular arcs of radius  e. to insure starting 

with a contour C whose surface derivatives are continuous 

and ti>    is assumed to be nonzero so the two crack faces are o 

separate and distinct.  This modified geometry shown in 

Fig. 3 meets all the restrictions imposed on Eq.(2.17). 

The upper wedge surface is labeled C^,   the circular 

boundary C~,   the lower wedge surface C, and the crack tip 

and upper and lower corner contours C., C5 amd Cg respec- 

tively.  Eq. (2.17) is applied to this modified geometry 

and the resulting equation separated into six parts.  Each 

of the parts represents a unique portion of the I.E. for 

reference points located on individual contours  C. , 

i = 1 to 6.  This yields: 

Wi(Pi>  "  £/VQl>*lfQl'1?i)dS£Ql) 
C
l 

-I'    /w2(Q2)K2(Q2P.)dS2(Q2)    -|     /w3(Q3)K3(Q3/P.)dS3(Q3) 
c2 c3 

"?     / W4(Q4)K4(Q4/Pi)dS4(Q4)-   i   /w5(Q5)K5(Q5^p.)dS5(Q5) 

c4 c5 

-* A IT       J        t .6(Q6)K6(Q6,P.)dSß(Q6) 
Fi(Pi)    i  =   1,6 

no sum on I 

(2.18 
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wherei 

11 2 
1   Aw3(Q3)Ln rA if  dS3(Q3> 

K.(Q.,P.)    
(X

J - ^f^1* (yj - yoi)lSA 

]  ]  i  

w.  = displacements on  r. 

P.,Q. = field and reference points on rt 

Points P. and Q. include all points in the set whr ch form 

the contour C; dS. are incremental arcs on C. for i=l to 6 

The operation limite^O is performed on Eq. (2.18).  The 

integral over the surfaces C., C5 and Cg when i = 1,2, or 3 

yields: 

Lim J  W4(Q4)K4(Q4,P.)dS4(Q4) = Lim / W. J^ ,p.) dS5 J^J 

Lim 
C3"*0   c A 6(Q6)K6(Q6,P.)ds (Q6)= 0   i = 1,2,3 

provided points  P  at the crack tip and each of the cor- 

ners are excluded from the set of reference points P..  The 
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exclusion of points PR from Eq.(2.18) imposes no limitation 

on the eventual numerical solution of the equation set.  This 

is an obvious result of the numerical solution technique 

which requires discretization of the equations with the ac- 

companying freedom of selecting a finite number of reference 

points.  The elimination of a small set of reference points 

P offers no special restriction nor any great inconvenience. 

The exclusion of points Pv  also allows the remaining integral 

equations for i = 4,5 and 6 in the Eq.(2.18) system to be 

ignored.  For, when the limit e.-O is performed and the points 

P are excluded from the reference set, these equations are 
K 

eliminated. 

Equation (2.18) applied to the special right circular cylinder 

problem described above, now becomes, 
2TT- iK 

l-60cos(e-^0) 
Wl(6o>   "  £/W2(Ö 

* 
1-26 «cos (9 »4»  )+6  2 

o To       o 

»/• 
-1 

3 

2TT 

o 

(6) 
6Q  sin(2  ^0j 

62+6   2 -   2<S • 6*   cos2<J> 
° o o 

de 

dS 

i=*? J cos 7T7—Y^L— Ln ['• 26   'cos(8-i)i   )+6„' o o       o ] de 
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mm 

- f J w1 
IM sin(9Q -  ipo) ,G (6)

6^2«.cos(8o-^)+l     dS + W2(6o) 

2TT-^0 

• 2(0) - f / w2(e, • i ae •   l/*w3,5> s,.2t^%^+1   « 
O   To 

«T 
"o r 

^foos -J$£$g{.   Ln ^2-2cos(9-eo) d6 

* A 
(2.19b) 

fAl 6o   sin  2*o ax 
(ö}   £2 -25  50cos 2*0+V 

2TT-l/> 

1 /* 
Ü      / W  (9) l-6n cos(8-n^Q)  de 

y      2m 1-260 cos(9-MJ>0)+60
2       ö +  W3(6o) 

2TT-IJ; 

=     4Ti%/cos   2T^fef    Ln   [l-26o.cos(0^o)+6o
2J d9 

*, 

(2.19c) 

In Eq.(2.19) W.., W_, and W, are the unknown displacements 

in the z-direction for the surfaces C.,C2, and C, respec- 

tively/and 6,6 ,9,9 are the remaining cylindrical co- 

ordinate variables for the field and reference points. The 

points 6=1, 6^ = 0, 9  =4», and 9  = 2TT- ip  are inadmis- o      o      o   o      o      o 

sible reference points in the Eq. (2.19), and ip e(0,ir). 

Numerical solutions of the integral equations which 

arise in this paper require particular attention to those 

singular kernels whose integrals exist only in the sense of 

a Principal Value.  Special techniques to account for the 
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effect of the singular stress field near crack tips and 

other critical points are also necessary for good numerical 

accuracy.  Therefore,  a major section in Chapter 3 is 

devoted to the discussion of these techniques, and numeri- 

cal results pertinent to this chapter are presented without 

explanation of the numerical processes used to obtain them. 

Eq. (2.19) is numerically solved for selected values 

of 0 _< \\>     <  90°.  Displacement values alonq the wedge faces 

are of particular interest.  A convenient parameter helpful 

to the evaluation of the numerical results is obtained by 

dividing the computed displacements along the wedge faces 

by the exact solution, and fitting a least squares straight 

line to this data.  The intercept value for 6= 0 is labeled 

NDP (Normalized Displacement Parameter).  With the use of 

the parameter NDP, all problem solutions for 0 < i|/ < 90° 

will yield NDP equal to one if the numerical error is zero. 

Percent deviation of NDP from unity is thus a means of 

evaluating the numerical accuracy of the results.  The re- 

sults are tabulated in Table 2.1. 

TABLE 2.1 

Anti-Plane Wedge Problem Results 

*o 90° 60° 45° 30°     25° 20° 15° 10°   j      5° 

NDP .998 .999 1.001 1.006 11.02 1.1 
i 

i 

%  Error 
.   „ 

.2% 
i  

.1% .1% .6%    j   2% 10% -\>20% ^30%   >50% 
 1—    .   _ 
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The results obtained for 4> >  30° clearly support the 

conclusion that the I.E. (2.19) is a proper representation 

of the sharp wedge problem and may be solved accurately. 

For values of ¥ < 30°, the important displacement results 

near the crack tip develop significant errors as ^ ap- 

proaches zero.  These results are so badly behaved tnat they 

render NDP meaningless when ^ -*•  0 and, the determination of 

the stress intensity factors for \\>    =  0 is impossible by 

this formulation. 

The requirement for a unique parametric representation 

of all boundary surfaces causes the computational difficul- 

ties experienced above.  A direct limiting process executed 

on Eq. (2.19a) and Eq. (2.19c), taking special care with all 

Principal Value integrals, shows 

, Lim  (Eq.2.19a) = . Lim 
Vo -*-0 Wo *  0 

(Eq. 2.19c) 

This result is clearly manifested in the numerical example. 

The determinate of the linear algebraic equation set ap- 

proaches zero as ty    approaches zero, confirming that Eq. 

(2.19) is incomplete in the limit ^+0. 

Before proceeding with the developments necessary to 

complete the I.E. it is convenient to rewrite Eq. (2.19) in 

1 
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the  following  form, 

Wl(S°    " ?/wl<si>  *11 *•!*•!>  dsl -i/W2t32)K21(s2 8°)ds: 

-if-: 
Tz 

3(S3) K31(83f81) ds3 =  Fl(Sl)  (2#20a) 
r3 

W2(s2} - */Wl(sl> 112<»l't2) dSl -^/"W2<S2)
K22( 

s2,s5)ds2 

3(83) K32(83fs°) ds  =  F2(S°) 
(2.20b) 

W3(S3> - l/v'l' K13(Sl,8°) dS;L _ ^yw2(82)K23(82,8°)ds: 

1 

" ?/W3(S3)K i3(Ä3»"I) ds3 = F3(s°) (2.20c) 

In Eq. (2.20) the symbols  s. and s". , i = 1 to 3 rep- 

resent field and source points on the domains T-.  The 

kernel functions appearing in Eq. (2.20) are identified 

from their counterparts in Eq. (2.19). 

The influence coefficients corresponding to adjacent 
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source points on the upper and lower wedge faces are cal- 

culated from Eqs. (2.20a) and (2.20c).  As </^0  the co- 

efficients become equal, one approaching the limit value 

from above and the other from below.  This suggests that 

if a sum and difference state relating adjoining wedge 

face source points is formed then higher order functions 

necessary to complete the governing I.E. may be identified. 

A scalar 6  which measures the distance from the crack tip o 

to the paired source points is introduced.  The sum and 

difference state is achieved by first adding and then sub- 

tracting Eqs.(2.20a) and (2.20c) from each other with the 

result: 

(W   + W3(öo>)   -7/Wl<8l)[Kll<»l6o)   +  K13(sl'6o>|dSl 

\fi 
2(s2) K21(s2'6o)+K23(s2'6o) ds. 

-!/- 3<S3> Kn(s3,6o)+   K13(s3,6o) ds. 

F1(V     +     F3(6o> (2.21a) 

W2(S°2>    "   i/"i<Äi£ia*»i'»2) dsi " i/ ±-/W2<s2)K22(s2,s2)ds2 

-tf- 3
(S3)K32(S3'S2)   dS2  =  W*> 

r* 
(2.21b) 
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(wl(6o) - w3(6o)) - ly^Uii 
r, 

"  ?/W2<S2>   [K 

«uC..,«,)-*.,^,«,) ] -1 

2(s2)   |K21(»2.«0) + K23(a2.60)   ds2 

-     l/Vaj* 31(s3,60)-  K33(s3,6)     ds3 

=     P1<V   "     F3<V (2.21c) 

The operation Lim <//-*•   0 performed on Eqs. (2.21a) and 

(2.19a) leads to identical equations.  Taking the limit 

as ^Q— 0 in Eq. (2.21c) results in the null identity. This 

limiting character of Eq. (2.21c) suggests the following 

assumption concerning the dependence of the integrals upon 

•fr Q .  Assume, 

7/wi<si>[Kn<si'V- Ki3<si<vldsi= w^k w] 
n>_l as ^ -*•() 

iyW2(s2)j"K21(s2,60)-   K23(s2/6o)]ds2=o[   ^o
nf2(«0)| 

n >  1  as   ty+Q 

if- 3(s3) K31(s3'V~ K33(s3'6o) 3--W3<«D)+0(*o
nf3r«o>) 

n  >   1 as   \li-*-Q — ro 

riCW"  WV   =     ° *"  F(6o)\      n  >- X as  ^0   (2.22) 
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Then Eq.   (2.21c)   assumes  the  form, 

wi<v - w3<v -K(6o)+ C h<*J\ 

o) +(w3(6o) +^
n

o . f3(60)Wo f2(6 

(2.23) 

and after simplifying (2.23) it follows that 

• h (V + W + W " F(6 ,]-. 
(2.24) 

Eq. (2.24) may be satisfied if \p    equals zero or by the 

bracketed quantity vanishing. 

In the following it is assumed that the bracketed 

expression equals zero, thus implying the existence of an 

additional constraint equation. 

The arguments presented in Eqs.(2.22) to (2.24) do 

not provide a convenient method for extracting the neces- 

sary equation, although its existence is implied.  Assuming 

n is integer, it is more convenient to differentiate n 

times and take the limit as 4» "*"0 thus arriving at the 

bracketed quantity directly.  Application of the technique 

shows that only one differentiation is required for the 

problem considered here. 

Returning to the notation of Eq. (2.19) this leads 
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to the simple process 

Lim r,     I i 
J- j Eq. (2.19a)-Eq.(2.19c)[H\}) "^«--p [Eq.2.21c] 
*o ( I      vo 

(2.26) 

Executing these operations yields 

Lim 
3W, ,6 6   «sin 24»o 

To 

1 (    0) -    1 #w    /ijx o  

Zn-A 

2,      .,   2 cos ip     +6 
o r  o    o 

do 

" Jr   A, O) PVgH! l-6o.cos(9^o) Le 

TT   <*V0 y    ^ 1-26   -cos(e-<p   )+6   2   " 1-26   «cos(e-*   )+6   2| 
' O O O O O    ' 

«o sin 2*0 

<fc 

3W3(6o) 

"3* 71     **J w3(6)  ^ 

2TT-^, 

6-26*6   «cos  2* +6 
o o    o 

.1.1, / 
2     3i|<    ./ 

Tz      :.n:   i-260-cos(6-^)+6o 
>d8 

<|>o 
1-26   <cos(6+i|)   )+6   ' 

o ro       o 

(2.27) 

Eq.(2.27) will be shown to provide the additional infor- 

mation necessary to complete the I.E. representation of 

the closed crack anti plane problem.  In the following 

a numerical-analytical technique is developed to allow 

refomulation of Eq. (2.27) into a non-singular integral 

equation thereby permitting direct numerical solution. 

The technique begins by identifying those integrals which 

exist only in the principal value sense in the limit as 

\\i *  0 ; in this case,the integrals over the crack faces 

containing W,, . and W3. ..  The Cauchy singular kernel in 

30 



the integral precludes interchanging the limit, differ- 

entiation, and integral operators.  To proceed, the sing- 

ular points in each P.V. integral are identified and the 

integrals separated into three integration domains as 

follows: 

6-H 
P.V. f  W1(6)  K(6,i|(0) d6= [wi (6)  K(6,ipo) d6 

6 +H 

+P.V. y*W1(6) K(6,VJ0) d6 +/wi<«)  K(*»*0) d6 
6~H 6+H 

(2.28) 

For example, K(6 \b  )  may have the form 
o 

Kfx   i   \        6   «sin   2it K(6/i|>0)  =   _£ 

<52-26'5   «cos  2*   +6   2 

o o     o 

K(6,i^   )   is  singular  for  6=  6     in  the  Lim    ty  *  0.     The 

integrals 

6-H i 

ywi(6)    K(6fi|>o)      d6       ,     y*W1(6)   K   (^,t|»o)   d« 

0 6 + H 

are Riemann integrable and sufficiently well-behaved to 

permit interchange of differentiation and limit operations 

with the integral.  The P.V. integral in Eq.(2.28) has 

been restricted to the domain of integration 
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1 

<5- - H < <5 <_  6  + H  .  The value H is selected to be real 

and positive such that it is always less than or equal to 

the smallest value of 6 .  Since the numerical solution of o 

the integral equations proceeds by the method of finite 

differences requiring satisfaction of the equations at a 

finite number of collocated points,  H is conveniently 

chosen as the value of the division size. 

/    Further analysis of the P.V. integral requires an 

approximation of the functional behavior of the displace- 

ments on the crack surfaces.  The ro  functional depend- 

ence npar the crack tip is well documented (34,35). A 

two term approximation for the crack tip displacements in 

the domain  6 -H<6<6 +H is selected which generally o    — — o 

takes the form: 

W1(P)  "  V7 +C2 

For surfaces near the crack tip, a value ofY = 1/2 

is used.  The linear formy = 1 is used for surfaces removed 

from the crack tip. 

The constants C, and C- are dependent on the values 

of Y selected as well as the values of the unknown dis- 

placements evaluated at points 6 = I-  H, 6 , and 6+  H. 

The Cauchy principal value integral may now be 
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approximated by 
60   +H 

V.       A*!**   (6,I|>   )   d£    "• C1  P.V./6Y«K   (6,4»   )d6 

6 0-H 8 0 ~H 
60+H 

C2-P.V.    /   K(6^0)   d6 5 Cj-   Jxi^e3   + C2-J2( V 

The P.V. integrals J, ,^ . and J_ .^ . are analytically 

evaluated.  Differentiation w.r.t. tL followed by Lim •• 0 
o 

are operations easily performed on the resulting closed 

form expressions for C, J, «j, . + C9 J- «w, * .  Analytical 

expressions result which depend on the value of Y  and 

are called insert functions.  Performing the remaining 

operations in Eq.(2.27) yields the desired equation. 

A system of integral equations which result from 

Lim   (Eq.2.21) may now be written.  Using the detailed 
*o-0 
notation of Eq. (2.19) and completing the details for Eqs. 

(2.21a,b) yields 

1-6 «cos 
" Wl<6n>  + I  /"W2(6)   1"6°'C 1 0    * J      * l-26_- 

4TT J 

cos 6+6 o       o 
2 de  -w3<60) 

o 

T («)• Ln  1-26 •cose+fifl 
I    °       I 

de. 

(2.29a) 
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de - w2(eo) 
. r1 r  sin e„   1 
i / w,(6) 5  
*   J      L I 6 -26«cos6 +l| o *-                       o J 

+ - / w,(9) i de - i / w  -^ 5  
• J 2    2     " y  3   62-26-cose +1 o o     L         o  J 

= Ä J Ve)  Ln |2"2 COS (e_eo,(  d6 

d6 

(2.29b) 

while from Eq. (2.21c) it follows that 

6 _+H o 

d6 

" V6) ? -T2 («^ + /JoT«J+ Ln 

/•27T 

(/^-/^H)(/s-+/jr?H) 

(/^+/5^H)(/5-PH-/^) 

(6) 
26o(l-60^)   Sin 

(1-26 Cos6+6o
2) 

•  W3(60) 
1   2/6o/ 
7  -H~V 

/6^+H  +   /6Q-H )+ Ln »7*} 
(•S~-/8~=H) (/5~+/iT~+H) o      o o      o 

(/6^+/T^H) (/TTH-/6~^) 

(6) 
26 

(6-6o) 
d6  -  r 

6   +H o 

(6) 
26 

(6-6o) 
d6 

r27T 

T2(9) 
26     Sin   6 o 

1-26   Cos6   +   6   ' o o 

de 

(2.29c) 
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In the foregoing 

pe[0,l]    et[0,2ir] 

Pc[0,U   e0ct0,2ir] 

and T  are normalized tractions prescribed on the cir- z 

cuiar boundary.  Eq. (2.29c) incorporates the insert 

function assuming piecewise square root displacements on 

the crack surface, i.e.Y = j  • 

Investigation of the set of integral equations (2.29) 

shows them to be a quasi-regular system of Fredholm equa- 

tions of the second kind as defined in Muskhelishivili, 

pp. 415-417 (32).  This assures that a unique solution 

exists.  It remains to show by example that this solution 

represents the cracked anti-plane boundary value problem 

of elasticity. 

A numerical solution of Eq. (2.29) was obtained. The 

details of this numerical technique shall be discussed in 

a special section in Chapter 3.  Comparison with the right 

circular cylinder (ty       = 0) problem discussed earlier, for 
o 

loading  T. 1 
COS tractions, provides the neces- Z(6) " 1     *-"* | 

sary verification.  The numerically determined displacement 

field on the boundary surfaces were accurate within 1* as 

compared to the analytical solution.  These results con- 

firm  the limiting process developed for the anti-plane 

crack problem.  Eq. (2.29) may now be assumed to be a 

complete formulation of the anti-plane cracked body 
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problem of elasticity. 

2.3 The Plane Elastostatic Cracked Body Integral Equations 

The plane elastostatic cracked body integral equations 

are developed by extension and generalization of the tech- 

niques used in the anti-plane problem.  A traction loaded 

plane body with m number of edge cracks as shown in Fig.4a 

is considered.  Fig. 4b illustrates the modified "open" 

crack geometry necessary to begin the analysis.  This geo- 

metry retains the sharp crack tips and corner point 

description.  Each open crack surface and all external 

boundaries are modeled by continuous parametric expressions 

which best lend themselves to the shape under consideration. 

A single parameter ^0 is chosen which allows modeling the 

modified geometry of Fig. 4b and, for the A,-»Q'  yields the 

closed crack geometry of Fig. 4a.  The Kth crack surfaces 

are labeled c", C„ where the upper (u) surface has been 

arbitrarily chosen to differentiate it from the opposite 

crack face, called the lower (L) face.  The set of all 

crack surfaces  C? + C. + + c£ + c£ + • •+ C* + c£ K   K        mm 

is designated C.  The external boundary is labeled S. 

The plane elastostatic system of I.E. (2.14) applies 

directly to the modified geometry with the exclusion of 

crack tip and corner reference points.  The exclusion of 

these points eliminates the need for rounding the corners 

which introduces additional complexities.  As in the anti- 

plane problem no theoretical compromise or numerical 
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inconvenience occurs from this restriction. 

This coupled pair of I.E. is separated into parts by 

writing individual equations for each crack surface and 

external boundary.  Recalling Eqs. (2.5) and (2.7) for 

definitions of U.. and T.., Eq. (2.14) assumes the form 

^(PS> - 2  «/"uaCQ£)  Taß(P
u, QU)  dS (QU) 

^ u 

- 2 

- 2 

« /ua(Q^) Taß(p£) dS(Q^) 

Q)dS(Qu) 

c u + cu + C U + (  +  cu ^1    ^2   TC-l  CK+1 •*'t'M 

« /'ua(Q
L) T03(PJ,Q) ds(QL} 

CL+rh+       +ru     +CU  +  Cu Cl+L2  *' ^K-l CK+I+-''S« 

"2 °/u
a(Qs) 

Ta3(PK'Q) dS<Qs) 

2 A.» UaB(PK 

S 

•  - 2 #Q) dS(Q) 

C+S 

(2.306 UK) 
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W   -  2  a/Ua<Q>  Taß<PS'Q>   *S (Q) 

c 

-2  a/«a(öB)   Taß(Ps,Qs)   dS(Qs) 

S 

2./fca(Q)   üaß(Ps'Q)   dS(Q) =  -   2 

CfS 

VPK>   -   2a/*ua(Q^)   ToBWg,Qg>   d8(Qg) 

'   2«   J«a(c4)   Ta3(P^, QK) dS(Q^) 

'K 

- 2 a /"ua(Q
U) Ta6(P^, Q) dS(Q

U) 

c
u
+c
u+  +cu  +cu     cu t'l+l-2+- * -+CK-1+CK+1+- ' *Cm 

(2.306S) 

-2 a   /u <QL> h (P
K'

Q)
 

ds (QL) 

Cl+C2+"-+CK-l+CK+l
+"-+Cm 

-   2 a /u (Qs,Taß(PK'Q)   dS(Qs) 

•     -2 W"VQ)Ua8(PK' Q) ds  (Q) 

C+S 

(2.30ßLK) 
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where 

a = 1,2 0 = 1,2 K = l,m (no sum on K) 

Eqs. (2,30) may be considered as a system of coupled 

integral equations.  The K index represents the decomposi- 

tion of the I.E. over the selected crack faces.  Eqs. 

(2.3O0UK) represent the subset of equations whose reference 

points lie on upper crack surfaces, there being K = l,2..m 

such equations, one for each crack.  In like manner, Eq. 

(2.30ßLK) represents m equations whose reference points 

lie on the lower surfaces.  Eq. (2.3O0S) is the remaining 

equation for reference points located on the external 

boundary S.  As an example of this notation, the function 

u„(pK) is interpreted as the displacements in the x„ 

direction for the set of points P^ which lie on the upper 

surface of the Kth crack.  The kernel, T ß(P^,Q~;)  is the äp  K  K , 

function defined in Eq. (2.7) evaluated for reference points 

on the upper Kth crack surface (PIJ) and field points on the 

lower Kth crack surface (QR).  Integration variables con- 

taining sub or superscripts assume their normal meaning. 

The rewriting of Eq.(2.14) as Eq. (2.30) permits 

the separation of the integrals into Cauchy principal 

value and Riemann integrals.  In both Eq. (2.3O0uK) and 

Eq. (2.3O0LK), the P.V. integrals appear as the first two 

integrals in the equation, the remaining integrals being 

i 

I 
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Riemann integrals.  In Eq. (2.30ßS), the integrals over the 

boundary S exist only in the P.V. sense, all others are 

Riemann integrable. 

The similarity of Eq. (2.30) to the governing I.E. 

for the anti-plane problem is evident.  It may be shown 

that the kernel functions in Eq. (2.30) and those in the 

anti-plane representation, Eq. (2.19), have similar be- 

havior.  The kernels are still Cauchy singular although tne 

complexity of the kernel functions increases greatly. 

This result could be anticipated since both formulations 

rest upon the same mathematical development.  Following 

a similar approach as in the Mode III problem a complete 

set of governing I.E. is formulated for Mode I and II prob- 

lems.  Proceeding as in the Mode III case, Eq. (2.30) is 

recombined and a  L_n operation performed in the following 

sequence. 

i1^ { Eq- (2.24ßuK) + Eq.(2.24ßLK)| 

° (2.31a) 

Lim 

*o 
J | Eq.(2.24BS)l (2.31b) 

Lim 
• 0   •—- | Eq. (2.24ßuK) - Eq. (2. 24ßLK)l 

(2.31c) 

where 6=1,2, K= 1,2. . .m 

The above operations are performed for each 3, K 
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equation with special care exercised for those integrals 

which have Cauchy singularities.  Eq. (2.30a) and (2.30c) 

each yield a minimum of 2m equations and Eq. (2.30b) yields 

a minimum of two more equations.  Thus, a geometry with m 

external cracks requires a minimum system of 4m + 2 coupled 

integral equations.  Complicated crack or external boundary 

shapes, requiring multiple parametric representation may 

require further decomposition of the equations with a com- 

mensurate increase in the system of governing equations. 

An example problem is solved using the geometry of 

Fig. 2 for \\>    = 0 and for surface tractions resulting in 

both Mode I and Mode II states.  The detailed results are 

reported in the next chapter and compare within 1% to the 

exact analytical solution.  The accuracy of the solution 

of Eq. (2.29) for the anti-plane Mode III example and 

Eq. (2.31) for the plane, Mode I, II case gives a numerical 

verification of the effectiveness of the method. 
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CHAPTER 3 

MODE I AND II PROBLEM STATEMENT AND INTEGRAL REPRESENTATION 

The solution technique for Mode I, II and III load- 

ing developed in Chapter 2 requires numerical verification. 

A circular disk with a simple edge crack is selected for 

study because it possesses a known closed form analytical 

solution for certain specific boundary conditions.  This 

disk is in a state of plane .strain and subjected to Mode I 

& II loading. 

An accurate solution of this problem via Eqs. (2.31) 

serves as a numerical verification of the plane elastostat- 

ic solution method.  A bent crack geometry which has drawn 

considerable attention [36,37] recently for application to 

mixed mode fracture is also considered to demonstrate the 

general applicability of the method.  This geometry is asy- 

metric and involves stress singularities at the bend vertex 

in addition to those at the crack tip.  A limiting case of 

this geometry is the straiqht crack; therefore only the 

general bent crack formulation needs to be presented, since 

both straight crack and bent crack results follow.  The 

bent crack problem statement and equation formulation is 

presented in Sec. 3.1, and the development of the numerical 

solution technique is discussed in Sec. 3.2.  The mode III 

problem was extensively discussed in Sec. 2.2.  It's numer- 
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ical solution is obtained by a similar process to that pre- 

sented in Sec. 3.2  and need not be discussed further. 

3.1 Bent Crack Problem Formulation 

A cracked circular domain of radius R, as shown in 

Fig. 5, is considered.  A cartesian coordinate system, xy, 

having its origin at the disk center,is employed.  A 

straight crack of length d intersects the circular surface 

and lies on the x axis in the region xe[f,R].  At x=f a 

secondary straight crack of length c emanates at an angle a 

to the x-axis.  The values of c, d, and a are restricted 

only by the requirement that the secondary crack must not 

penetrate the circular boundary S.  Solutions for the trac- 

tion boundary value problem for several loadings on the ex- 

ternal surfaces are to be obtained numerically. 

Analysis of this problem begins with the construction 

of the modified open crack geometry shown in fig. 6.  The 

secondary crack is opened from the crack tip by an angle 

Zi>Q   so the primary crack has uniform separation 

2g=2£*cosa'tan $ .  The x-coordinate value of the crack tip 

is labeled e while the projection of c on x is denoted by 

£„ The individual surfaces forming the boundary are iden- 

tified by T.  i=l,2'««5  (see Fig. 6).  A normalized geom- 

etry, Fig. 7, is obtained by dividing all length variables 

by the radius R, capital letters denoting the normalized 

variables.  On the bent crack surfaces r, T       the distance 

from the crack tip, p, locates field points, while B iden- 
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tifies source point locations. On the straight crack sur- 

faces ro r. field points are located by the variable xl 

and source points by B2/ both measured from the coordinate 

origin . On the circular boundary r, the radian mea- 

sure 0 locates field points and 8 the source points. As 

previously discussed the modified geometry needs no crack 

tip or corner rounding if the set of reference variables 

are restricted to an oDen set excludina these points. 

The pair of coupled B.I.E. (2.14) applv directly to 

the modified bent crack geometry with crack tip and corner 

points excluded from the reference set.  Eqs. (2.14) are 

separated into five parts by writing individual equations 

for reference points located on the discrete r. boundaries. 

This decomposition permits examination of the P.V. integrals 

and allows application of the solution method discussed in 

Chapter 2.  Thus, Eq. (2.14) yields. 

- cos   $ 

1 

Mu1(p)    •   KIj^P,p)     + vx(p)   •   KII^]. -~  Uj(P)     •       I ;u; (pi KIn(i-,P)       +    •' , (p)     •    Kl I T1 ]df 

> 

0 

,(X"L) KIj2(P,3tL)   +  V2(5cl)    •   KIIJ2] d  xl 

F+C*tan  \b     •   tana 
o 

2TT-C*tan  i|/ 

+   |[u3(e)   *   KIj3(P(8)   +  v3(6).   KIIJ3  ]d9 

C«tan  $ o 
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j£Vxl>   .   KIj4(P,iQ)   *   ^(SL)   .   nx       ]m 

F-Otan   ty     •   tan  a 

C/ — cos   $ 

+/[U5(P)    .   KIJ5(P,P)    +vp)    .KIIjs]dp 

FJ(P) 

—   COS    tjj 

(3.1AJ) 

T
V

J  
(p)+ ^(p)     •    KIIIjl(p,p)    +Vi(p)    .   KIVjl}dp 

+   /{u2   (xl).   Kllja<PrtlJ    +v2   (xl)-   KIVJ2Jd  xl 

F +  C   •   tan  ^-tana 

2iT-Otan  $ 

/{u3  (e).  KinJ3(pfflo) +v3(9)    .  KIVj3 |de 

C  tan ip0 

1 
+ /"{u4   (XI).   KIIIj4 (PrJtl)   +v^    m)   .   KIVj4 | d n 

F-Otan  \f> »tan   a 
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•—   ...   ^mjL 

—   COS    tp 

n +   I |u 5(p) .   KIIIJ5  (p,p)  +v5(p) •   K   IVJ51     dp 

FTB(P) 

where 

3Ln R 
KI       (P,Q) =/K -   4-y-M-R„ I —— JL \ JL,x   f       3n 

JL 

(3.1BJ) 

KIITT   (P,Q) J_4.y.M.R .      R * 
| JL,y JL,x> 

3LnR JL 
3n. 

+ K  •{  (LnRJL),y    V(Ln RJL> ,x ny) 

i \    3LnR_T 
KIII        (P,Q)=-4'u«M'RT. •   RTT        \   — 2k. JL ( JL,y JL,x  f      3nT 

-KJ[(Ln RJL),y nx -   (Ln  RJL),x   yy]} 

JL (P'Q) 5{rK-4.W.M.RjI|       R ]  \ »  L" RJL . 
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TEa—"TT= 

FT
A(r) i * / T      «txl(Q)'<'iü»RV'""jL,x RJL,X> 

L=l L 

+t   L(Q)   •   M*R,_ •   RTT I   dST (Q) y JL,x JL,y   f       L 

Fj
B(P) £ + /I t      (Q)-(J5  Ln   R2

TT+M'RTT RTT yL * JL JL,y    JL,y 

L=l 

+txL(Q) ' M * RJL,X * RJL,y  dSL {Q) 

J f L — X t 2. t    ••• b 

unless indicated 

no sum on repeated indices 
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RJL  =  J (Xj   (Q) -  XL(P) )2   +   (Yj(Q)    -   YL<P> )2 >h 

nT   = unit normal on  surface   TT 
L 1J 

M s -(X+y)/(X+3y) 

K = 2u2/(-X+3y) 

X =  -(A+3y)/2iry(X+2y)) 

y,X are Lame's material constants. 

In the notation of Eq. (3.1 AJ) and (3.1BJ), J takes 

on values from 1 to 5 creating a system of ten coupled 

equations.  The reference point variable P is understood to 

have meaning B, B2 or 6fl depending on the r^ reference sur- 

face for which the equation applies.  The kernel functions 

KIJL, Kill  , KIIIJL, and KIVJL defined in Eq. (3.1), are 

presented in algebraic detail in Appendix A.  Kernels hav- 

ing repeated indices in Eq. (3.1 AJ) and (3.1 BJ) are singu- 

lar in the lim ^0 •> 0 and integrals containing such kernels 

exist only in the Principal Value sense. 

To proceed, form a sum and difference state on those 

equations having source points on the crack surfaces.  This 

is followed by the limiting operation lim if» +0, after dif- 

ferentiation with respect to i|> in the case of the differen- 
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ce  equations.  These operations may be summarized as fol- 

lows : 

Lim 
# • 0 
0 

{Eq. (3.1 A 1) + Eq. (3.1 A 5)} 

Limo  (Eq. (3.1 A 2) + Eq. (3.1 A 4)} 

Lim 

*0 * ° 
{Eq. (3.1 A 3)} 

Lim 

*0 * ° 

Lim 

*0 * ° 

Lim 

*o - ° 

{Eq. (3.1 B 1) + Eq. (3.1 B 5)} 

{Eq. (3.1 B 2) + Eq. (3.1 B 4)} 

{Eq. (3.1 B 3)} 

Lim   8 

*o - ° ^0 

(3.2 A 1) 

(3.2 A 2) 

(3.2 A 3) 

Lim   {-äl^tEq. (3.1 A 2) - Eq. (3.1 A 4)]}   (3.2 A 4) 
4>0 * O   

B*fl 

« Lim0  
{g|-lE<3- I**1  A 1) - Eq. (3.1 A 5)]}   (3.2 A 5) 

(3.2 B 1) 

(3.2 B 2) 

(3.2 B 3) 

* Limo äf"{[Eq- C3'1 B 2) * E<3- {3-a B 4)]}  (3'2 B 4) 

{[Eq. (3.1'B 1) - Eq. (3.1 B 5)]}   (3.2 B 5) 

The mathematical operations indicated in equation 

(3.2) are performed using the techniques discussed in Sec- 

tion 2.2.  The singularities are removed by assuming a 

piece-wise functional behavior for the unknown displace- 
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*n—: T~7~TX ~n 
ments followed by analytical evaluation in the neighborhood 

of the singular point of each principal value integral.  A 

key requirement for the successful performance of this ana- 

lytical step is knowledge of the correct functional behav- 

ior of the unknown displacements.  Fortunately, this behav- 

ior is well known. 

In general a satisfactory representation is given by 

u - C, C^+C_ where the selection ot the parameter y  de- 

pends upon the surface in question.  This selection of y is 

treated in detail in Section 3.2.  The analytical evalua- 

tion of the integrals in the neighborhood of the singular 

regions results in algebraic functions labeled insert func- 

tions.  The equations which result are a coupled system of 

simultaneous non-singular integral equations of the second 

kind. 

The completed equation set (3.2) is presented in Ap- 

pendix B.  Section B.l contains the functional form of the 

integral equations, detailing the geometric kernel func- 

tion.  Section B.2 contains three sets of insert functions, 

one for each of three classes of assumed displacement func- 

tionals.  Section B.3 presents the detailed forcing func- 

tions for general traction loading on all surfaces. 

3.2 Numerical Solution Technique 

The numerical solution of Eqs. (3.2) proceeds direct- 

ly by employing the standard methods developed for non- 

singular Fredholm equations of the second kind.  A finite 
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number of mesh points partition the boundaries r.   The in- 

tegrals in (3.2) are similarly partitioned and the unknown 

displacements approximated within these intervals.  The in- 

tegrals are numerically evaluated, resulting in a set of 

influence coefficients which operate on the unknown dis- 

placement vector evaluated at discrete mesh points.  The 

continuous representation of Eqs. (3.2) is thus transformed 

into a linear system of algebraic equations. 

The left side of Eqs. (3.2) shown in Section B.l leads 

to the algebraically equivalent system involving the influence 

coefficient matrix and displacement column vector.  The 

right side of (3.2) generates a column vector of forcing 

functions representing the traction loading. 

[ C ]  { u }  =  {  F  } (3.3) 

The resulting matrix equation (3.3) after row elimination or 

coefficient substitution for the supression of rigid body 

motion may be solved directly.  Calculation of the influ- 

ence coefficients forming the [C] matrix begins by parti- 

tioning the boundary as illustrated in Fig. 8.  Ml points 

are located on r, and r,. with equal spacing H1=C/(M1 + .5). 

The last reference point on T. or r,. is located Hl/2 dis- 

tance from the bend vertex. SurfaceT  and r contain M2 points 

spaced H2 • D/(M2 + .5) apart.  The mesh point nearest the 

bend vertex is again spaced H2/2 from the bend point.  A 

total of M3 reference points are equally spaced on T^  with 

H3 = 2TT/^13 + 1) .  No reference points are located on the 
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crack tip, bend vertex, or crack corners. 

The numerical evaluations of the integrals proceeds 

by employing the partition just described.  The unknown dis- 

placements are approximated in a piecewise manner by the 

function 

u = \  ?  + Cn Y£ ft,l] 

(3.4) 

where ? is understood to be 6, xl or 8 depending on the in- 

tegration domain.  A and C are coefficients involving the 

unknown displacements at the mesh points.  Then, a typical 

integral term in (3.2) may be written as 

B-Hn N (n+1) Hn 

Ju^p)   K (p,ß)dp ,y*^       /ul(p) K(p,0)dp 

n=0 n'H, 

N (n+l)H. (n+l)H. 

n=o    n«H-, 

pYK(p,ß) dp -I K(p,ß) dp 
(3.5) '1 " "1 

The integrals appearing in Eq. (3.5) are further partition- 

ed into an even number of M subintervals and numerically 

evaluated by Simpson's rule. 

The insert functions discussed earlier and presented 

in App. B.2 contribute the dominant diagonal coefficients in 

the "C" matrix.  These functions result from the analytical 

evaluation of the P.V. contribution and their accuracy is 
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directly dependent on the quality of the assumed unknown 

displacement function.  The non-singular integrals in the 

near neighborhood of the singular points also result in 

large coefficients located in a band on either side of the 

diagonal elements.  The accuracy of these coefficients is 

dependent on both the quality of the assumed displacement 

function and the accuracy of the numerical integration. 

The functional behavior of the boundary displacement 

near the crack tip and bend vertex are well documented. 

[36, 38, 39].  The numerical analysis uses the square root 

functional, y=h,   for Ml-2 partitions on r  and for Ml-4 

divisions on r .  The bend corner formed by the common 

point on V     and T     is similar to a sharp wedge   139].  The 
••5 

displacement field in the neighborhood of the wedge vertex 

has the form (3.4) with y  determined from the first posi- 

tive real root of the transcendental equation 

sin (Y[IT+CI]) + ysin (v+a)   = 0 (3.6) 

Values of ae   (0,TT) result in ye   (^,1). 

This displacement approximation was employed for numerical 

integration of the non-singular integrals and for the ana- 

lytical evaluation of the insert functions over a ten refer- 

ence point domain.  This domain includes 5 mesh points on 

T and 5 points on r  surrounding the vertex surfaces.  By 
it 5 

restricting the bent crack angle a to be positive a linear 

displacement function suffices on the upper bend vertex. 

This is appropriate because under these conditions only the 
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lower surface possesses a singular behavior near the vertex 

[34,39,40].  On all of the remaining surfaces, the dis- 

placement components are modeled by piecewise linear func- 

tions.  It should be noted that to insuie compatibility of 

results similar displacement functions were assumed for 

both the analytically determined insert functions and the 

numerically integrated coefficients, depending on the sur- 

face of integration. 

The accuracy of the numerical integration is ascer- 

tained by conducting numerical experiments on the most sen- 

sitive integrals.  Taking advantage of the 16 digit accur- 

acy of the CDC 6600 computer and using the simple Simpson's 

formula, most integrals are successfully evaluated 

(<<1% error) by a subpartition of M = 20.  The most sensi- 

tive kernels require M = 250.  In this manner the geometric 

influence coefficients forming [C] are calculated.  The 

matrix [C] is full with the dominant influence coefficients 

banded along the diagonal. 

Generation of the forcing function matrix proceeds by 

direct use of the Simpson approximation.  Statement of the 

traction loading on each boundary completes the definition 

of the integrals shown in App. B.3 and evaluation proceeds 

by direct numerical integration.  A partition of two- 

hundred evenly spaced points for each surface provides 

accurate results (<1% error). 
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This numerical reduction of the integral equations 

reduces Eqs. (3.2) to a system of 2{»2«(M1+M2) + M3} alge- 

braic equations in the same number of unknowns.  Solution 

of this algebraic system by standard numerical methods then 

leads to the values of the displacement components at the 

mesh points. 

The necessary computations for the examples presented 

herein were performed on a CDC 6600 computer.  This compu- 

ter features sixteen digit accuracy; thus/ no special dou- 

ble precision operations were utilized.  The program re- 

quirements dictated Ml • 8, M2 = 7, and M3 = 11 as minimum 

values for the general bent crack problem.  The upper limit 

was established by accuracy requirements (^1%) and seldom 

exceeded 130 equations.  This equation size required 

130,000 memory units and sixty seconds to compute coeffi- 

cients and solve the equations. 
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CHAPTER 4 

NUMERICAL EXAMPLES AND DISCUSSION 

Attention is now turned to two classes of problems. 

The first consists of two problems for which analytical 

solutions exist, thus permitting verification of the 

solution method.  The second class of problems presents 

results for the bent crack as a function of crack angle 

and loading mode. 

4.1 Numerical Verification Examples 

EXAMPLE #1.  The circular disk with a straight edge 

crack equal to the plate radius has an analytic closed 

form solution for specific traction loadings.  This geometry 

is a special case of the bent crack shown in Fig. 5 with 

a equal to zero and c plus d equal to R.  The governing 

biharmonic equation for the Airy stress function is solved 

using the technique developed by Williams (34,35).  A trac- 

tion loading, equivalent to the first term in the Williams' 

solution, is thus generated to develop a special problem 

possessing a closed form solution.  A problem summary of 

the required traction loadings and the resulting displace- 

ments for each boundary surface follows using the notation 

in Chapter 3; 
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•ET 

Traction Loading on Boundary Surfac es 

upper 
crack 
face 

V Scl - tyl =  0 

fcx2 - ty2 =   0 

lower 
crack 
face 

V fcx4 ' fc
y4 •   ° 

V fcxs = fcy5 "  ° 

circular 
boundary V t   =  KI 

X3       sin l _ sin ^n-COS
2(4-) " 1 ST* 2(        2 

+  KH     M     2 A —- cos - 3 cosz(f) - 1 
J2ir     2 /       2 

^3  —•—- Sln - {- sine } 
ST* 2 (2     ) 

+ K 
_j[I  sin _e ) 3 cos (6) 
J7H 2 (     2 

- 1 

Dimensionless Displacements in x-direction; 

r, : 
I'*     UKP) =Co/;.KII 

•1 

2:     u2(xl)- Co /^Kn 

u 
4(xl) = -Co/fl KX1 

U5(P) = "Co^K 
II 
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3:   u3 (9) = ^o Kj j cose -sin (-y)«(2(l-v)-sin29_ ) 

-sin 9 -cos (-§-) (cos2(|-) + (l-2v) ) 

+Co„(    a     9  ._,    29 
2~ K J cos9 -cos Y~   (3 *cos Y~ 

-(2v + 1)) 

sin 9 «sin j-  (3* sin2|— + 2v -4) 

Dimensionless Displacements in the y-direction: 

I\ : r     vi(p) =   co^' Ki 

F2:        v2(xl)=     Com     KIZ 

'*'•        VA 
(xl)   =  "   C     v/xl     K_ 4 4 o  w I 

:        v. (P)     =   -   Cfp    •   K, 

F3:        v3(9) C ( 9 5   9 
o     Kj J  sine      sin2~"   (2(l-v)-sin    ^  ) 

Q on 
+     cos9     cos   2—   (cos     ^— +   (1-2V)) 

(Eq.   continues  on nex; page) 
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+ 
Co a e        2 e 

KTI J sin ° 'cos j— (3 .cos  •=- 

-  (2v + 1)> 

where 4(l-v*) 

E  |/2  TT 

cose iin |(3.sin2 J- + 2(v-2)» 

(4.1) 

and  v Poisson's  ratio 

E = Young's modulus 

and u, v represent displacements in the x,y directions 

respectively. 

The loading for this problem is confined to the cir- 

cular boundary and generates both Mode I and Mode II states 

at the crack tip.  The stress intensity factors KT and K 

are explicitly represented in both traction and displace- 

ment equations in (4.1).  K and KTT are arbitrary and may 

be set equal to unity in the traction equations above. 

The B.I.E. (3.2) are solved for this geometry and 

traction loading  stated in (4.1).  The resulting displace- 

ment solutions are recorded and used to calculate the stress 

intensity factors and strain energy of the body.  The stress 

intensity factors are analytically defined by the formula 

K  - Lim Uni( P) .  Lim Un5(p) 
I    P -* 0      P * 0   

CoVP Co^> 
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K 
II 

=     Lim      Utl.(,P ) =       Lim   Ut5^p ) 

CO/P C   /p o 
(4.2) 

where Un,Ut are normal and tangential displacements. 

The numerical calculation of these factors proceeds 

by first forming the expressions 

K 
Up) 

Unl(p)-un5(P> 

2   c    «yp o 

K    =  Utl (P)-Üt5(p) 
2(P)      2  Co  ^P 

calculated for p e r^Ts and determining their values as 

P •* 0 by extrapolation. The calculated stress intensity 

factors then follow from (4.2): 

KI " Kl(0) 

KII  K2(0) 

(4.3) 

The strain energy is calculated from the boundary displace- 

ments and traction loading by use of Clapeyron's theorem(41), 

- IA i dS (4.4) 

The displacements calculated at the mesh points are numer- 

ically integrated with the tractions using Simpson's 
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formula to complete the calculations. 

EXAMPLE #1 -  Results 

The results for example #1 are summarized in Table 

4.1 and 4.2.  A parametric study is presented  to test 

the sensitivity of mesh size and percent square root ap- 

proximation on the accuracy of the numerical solution. 

Fifteen examples are cited for fixed C and D values (as a 

function of mesh size - Ml, M2, and M3) and MT, the total 

number of equations in the matrix.  The calculated values 

*  ,,        o ^ ,..  Eg calculated of KT,KTT, and the strain energy ratio • B a .  are 
I  II E Exact s 

compared to unity to assess the accuracy of the numerical 

solution.  The maximum error in either K_ , K  or Eg is 

listed in the last column. 

Most of the results indicate less than 1% error for 

a wide range of mesh sizes.  Errors over 1% are generally 

exhibited when the ratio of the partition sizes H^  and H2 

on C and D, is greater than 3 to 1.  The error sensitivity 

to the partition ratio of H./FU is understood by inspection 

of Eq. (3.2) which generates the influence coefficients. 

The dominant coefficients result from the kernel functions 

generated within and between the C and D crack faces, these 

1  2 
exhibit a strong dependency on the values of (^ )   as 

12 compared to (s) ,  Only off diagonal coefficients, small 
H2 

compared to the diagonals, are formed from the kernel func- 

tions interconnecting the circular surface and the crack. 
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In general these problems, and the bent crack geometries 

to be discussed later, require the restriction 

1/3 <^ Hi/H2 — 3 to insure errors of less than one percent. 

This imposed restriction on the ratio of C/D which is im- 

portant to the bent crack studies. 

Table 4.2 presents example problem #1 results for 

varying partitions and increasing crack regions, on which 

the unknown displacement functions are represented by the 

square root functional form. One extreme, assuming linear 

displacement behavior over the complete crack boundary, 

shows an error of 35%.  Rapid reduction in error (^2%) is 

achieved when the square root representation is utilized 

over four or more mesh points.  These results confirm the 

importance of properly modeling the displacements near the 

crack tip and provide assurance that a reasonable number 

of mesh points leads to good accuracy. 

The data in Tables 4.1 and 4.2 illustrate the relai- 

tive insensitivity of the results upon mesh size provided 

certain guidelines are adhered to.  This results from pro- 

per modeling of the unknown displacements and careful 

numerical integration of the known integrals on each par- 

tition.  It is most important to model the square root be- 

havior of the displacements in the neighborhood of the 

crack tip.  The accuracy of the numerical integration scheme 

may be assured by successive refinement of the partitions 

or use of higher order integration techniques. 
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TABLE 4.1 

No.Eq 
MT Ml M2 M3 

Kl 
Cal. Cal. 

Es Cal. Max.% Error 
Kj, KII( or 

in 
Es Es Exact 

82 6 5 19 .9979 1.006 .9983 0.6 

90 8 7 15 1.009 1.007 .9964 0.9 

98 8 7 19 1.009 1.003 .9991 0.9 

106 10 7 19 1.009 1.003 .9989 0.9 

114 12 7 19 1.010 1.001 .9989 1.0 

130 12 7 27 1.002 1.001 1.0006 0.2 

138 10 7 35 .9988 1.002 1.001 0.2 

138 12 7 31 1.000 1.001 1.001 0.1 

138 16 7 23 1.006 1.001 1.001 0.6 

138 10 13 23 1.010 .9991 1.003 1.0 

138 14 13 15 .9992 1.006 .9944 0.6 

138 12 11 23 1.016 .9993 1.0022 1.6 

138 14 9 23 1.013 .9999 1.001 1.3 

138 8 15 23 1.024 .9996 1.003 2.4 

Note: 1) The values in this table were calculated for \ 

C = .625,  D - .375, E  exact -  1.561 #in/in.thickness s 

63 



TABLE 4.2 

%crack 
with 
v/ 

No. 
Meshpt 

v/ Ml M2 M3 KI KII 

E    cal 
s 

Max%  Error in 
Kl'KIPEs E    exact s 

0 0 12 7 19 1.35 1.36 1.020 36% 

3% 4 *6 29 23 1.042 1.018 1.001 4.2% 

6% 4 • *6 19 23 1.021 1.014 1.001 2.1% 

20% 4 6 13 27 1.012 1.009 1.004 1.2% 

30% 6 8 11 27 1.009 1.005 1.003 0.9% 

40% 8 10 9 27 1.005 1.002 1.002 0.5% 

50% 10 12 7 27 1.002 1.001 1.000 0.2% 

60% 12 14 5 27 1.000 .9995 .9998 .05% 

* C = .05 D = .950 

** C = .1 D = .900 

All other runs used constant Hx = H2 = .05 and 

C + D = 1.0 
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After modeling the displacement behavior between mesh 

points, this study utilized a Simpson approximation 

coupled to an accuracy check to insure errors of less 

than 1%.  Higher order integration techniques could have 

been selectively used to save modest amounts of com- 

putational time but were not attempted during this study. 

EXAMPLE PROBLEM #2.  The second example deals with the 

same circular geometry except that a variable length 

straight crack opened by a constant internal pressure p 

is considered.  J. Tweed and D.P. Rooke (42) report re- 

sults for a normalized disk of radius one and edge crack 

length a, where a is allowed to vary between 0 and 1. 

This geometry is identical to that shown in Fig. 7 with 

a  = 0 and C + D = a.  The results are presented in Fig. 9 

for values of a between .025 and 1.9.  Comparison with 

Tweed's data is possible in the range  as(0/1) and shows 

less than a 1% deviation.  The results of Gross et al (43) 

for stress intensity factors of a single edge notch speci- 

men, modified to represent similar internal pressure 

loading  are also shown for comparison purposes in the 

range «£(1*1.8).  As expected, due to the increased stiff- 

ness of the straight boundary surface vs. the curved sur- 

face of the disk geometry, the Gross results show lower 

KT factors for a values of 0 to 1.4. For  values between 

1.4 and 1.8, the results for the single edge notch specimen 
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and those presented here for the disk are similar. 

The results of Example Problems #1 and #2 numerically 

confirm the solution method developed in Chapter 2 for 

plane elastostatic crack problems.  In addition the numerical 

techniques necessary to obtain accurate solutions are 

established. 

4.2 Bent Crack Geometry Results 

The last example considers the bent crack (cx> 0) 

geometry of Fig. 7, and results from a parametric investi- 

gation of the geometry and loading are presented.  The 

geometric parameters are restricted to values of D = .5 

while C e[.02, • 3j and ae[o,85] . A type of traction load- 

ing is examined which permits a continuous variation from 

tension to shear to be considered. 

Before performing the bent crack study, a straight 

crack (a=0) with C + D = .6 is investigated to determine 

the dependence of the error upon the ratio C/D.  Results 

of example problem #1 and #2 (not shown explicitly) are 

used to provide a comparison for values of C/D between .01 

and .3.  A partition size defined by Ml = 10, M2 = 19 and 

M3 = 27 is found to result in the lowest error for the 

widest range of C/D.  The results indicate errors of less 

than 1% for C/D >_  .05, three percent error for C/D = .025, 

and eight percent for C/D = .01.  This mesh size allows a 

square root approximation of the boundary displacements 

on six points in the neighborhood 
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II 

of the crack tip.  As discussed in section 3.2, the 

piecewise Y -displacement behavior is incorporated on 

10 mesh points; 5 points on either side of the bend vertex 

on the lower crack surfaces. 

A traction loading on the boundary surfaces which 

simulates a continuous variation between pure tension and 

pure shear on a straight cracked disk is desirable. This 

permits comparison of data with reported results for the 

bent crack in an unbounded medium subject to far field 

loading.  This simulation is accomplished by loading the 

crack faces and retaining traction free boundary conditions 

on the circular domain.  A superposition process illus- 

trated in Fig. 10 helps to relate the problem with trac- 

tion loading on the crack faces to one in which the cir- 

cular boundary is loaded. 

Begin by loading the circular boundaries of an un- 

cracked disk with tractions F(ß), the details of this load- 

ing function need not be specified at this point.  Assume 

that on the line, which will later become the crack, a 

constant traction of magnitude T and orientation P to the 

x- axis results from the applied load  F(6).  Cutting this 

line, and forming a traction free crack results in a crack 

opening displacement.  The crack face displacements are 

brought back to zero by the application of crack face 

tractions  - T.  Fig. 10a shows the results of this pro" 

cess, while Fig. 10b illustrates a similar cracked body 
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with crack face tractions T applied.  Superposition of 

the two problems in Fig. 10a,b result in the problem in- 

dicated by Fig. 10c.  The stress intensity calculated 

for the geometry of Fig. 10a is zero, thus the stress in- 

tensities for the geometry and loadings of Fig. 10b and 

10c are identical.  The strain energy release rates which 

may be calculated from the stress intensity factors will 

also be similar for the geometries of Fig. 10b,c. 

Consider a pure Mode I loading by defining F (ß) to 

be a constant set of tractions with magnitude T and 

orientation 3= 90°.  Constant tractions T applied to 

the faces of a straight crack (Fig. 10b) leads to the 

desired formulation.  Pure Mode II loading requires F(3) 

to be taken as a set of tractions  T = T cos ( 2 9——) 

and TQ = T  Sin(29+ -~)   where 9 is measured from the 

x-axis.  This results in a loading for the problem shown 

in Fig. 10b defined by constant tractions T applied 

parallel (0= 0) to the crack faces, and opposite in direc- 

tion on opposing faces.  Constant loading on the crack 

faces for the geometry of Fig. (10b) applied at angles 

0 < ß <90  result in mixed mode loading. 

The geometry and loading of Fig. 10b offer further 

advantages in conducting the numerical operations.  The 

higher concentration of mesh points on the crack surfaces 

compared to the circular domain, coupled with the simple 

loading, produces accurate results for the strain energy, 

68 

M^ —^ 



which is important for the calculation of the strain 

energy release rate.  As a check of this point, a series 

of straight crack geometries under Example #2 loading 

are solved for crack lengths of .5, .510, .525, and .550. 

The strain energy release rate, calculated using the .5 

crack length as the standard is used to predict the K 

factor.  The stress intensity factor calculated in this 

manner from the strain energy release  rate is accurate 

within 1% when compared with that from the crack face dis- 

placement calculation.  This calculation requires ac- 

curacy in the strain energy results to four significant 

figures; this is easily achieved for all of the check 

problems considered. 

Results 

The geometry and loading of Fig. 10b is investigated 

for values of a between 0  and 80  in 5  increments and $ 

between 0  and 180  in 15  increments.  In all cases con- 

sidered in the following, the magnitude of T is set equal 

to unity.  Table 4.3 presents the calculated values of 

KT,KTT and the strain energy  E  for C • 0.25 and D = .50. I  ll s    — 

The last column presents results for a straight crack 

length C + D = .5 which is taken as the initial crack 

length.  The expected increase or decrease in K  and K . 

as a function of <* und t   is produced.  For example, at 

&   =  0 which represents pure shear loading, the crack at 

• =  0 begins with KT = 0 and K11  = 1.30.  As the crack 
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TABLE 4.3 

BENT CRACK RESULTS 

••I 

15 

30 

45 

60 

75 

90 

105 

120 

135 

150 

165 

180 

.402879 
0   1.3 

.439216 
613 1.25 

.538535 
1.18  1.12 

.674223 
1.67   .92 

.809923 
2.05   .65 

.909274 
2.28   .33 

.945655 
2.36   0 

.909318 
2.28  -.33 

.810000 
2.05  -.65 

.674312 
1.67  -.92 

.538612 
1.18 -1.12 

.439261 
61 -1.25 

.402879 
0  -1.30 

.38513 
.25 1.02 

.431000 
75 1.00 

.530070 
1.22 .93 

.66113 
1.59 .55 

.78532 
1.89 .55 

.872300 
2.00 .30 

.898400 
1.92  0 

.86241 
1.83 -.08 

.77108 
1.64 -.50 

.65234 
1.20 -.71 

50214 
81 -.88 

40256 
35 -.98 

.35813 
25 -1.02 

iol 

.371933 
49  .82 

.420990 
91  .81 

.522079 
1.26 .74 

.648113 
1.52 .63 

.765322 
1.69 .47 

.842301 
1.73 .27 

.858421 
1.67 .05 

.809365 
1.48 -.15 

.708276 
1.19 -.35 

582242 
83 -.54 

,465032 
41 -.68 

,388054 
.04 -.78 

371933 
49 -.82 

20° 

.372538 

.65  .72 

.423354 
1.05  .68 

.525241 
1.37  .57 

.650899 
1.61  .45 

.766658 
1.73  .28 

.841501 
1.74  .10 

.855373 
1.62 -.08 

.804558 
1.4  -.26 

.702671 
1.07 -.42 

.577013 

.70 -.56 

.461253 

.25 -.66 

.386411 
-.20 -.70 

.372538 
-.65 -.72 

30° 

.373799 

.79  .59 

.426216 
1.16  .51 

.528815 
1.47  .40 

.654104 
1.67  .26 

.768513 
1.76  .10 

.841386 
1.73 -.05 

.853196 
1.58 0.21 

.800780 
1.32 -.35 

.698181 

.98 -.48 

.572892 

.56 -.56 

.458483 

.02 -.61 

.385610 
-.34 -.62 

.373799 
-.79 -.59 

Key: E  x 10 s E • Strain energy lb-in/in.thick 

KI   KII 
K , KI;E~ psi J in.   E = 10  psi 

D =  .50  C = .025    V  =  .25 
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TABLE   4.3    (cont,) 

40° 50° 60° 70° **o° 

0 
.375510 
.92  .43 

.377763 
1.04  .25 

.381188 
1.15  .02 

.408756 
1.32 -.28 

.362732 
0   1.1 

15 
.429538 

1.27  .34 
.433796 
1.38  .14 

.440637 
1.50 -.11 

.457678 
1.66 -.52 

.381135 
.56  1.1 

30 
.533054 

1.55  .21 
.538938 
1.64  0 

.559288 
1.72 -.27 

.576983 
1.90 -.71 

.467012 
1.1   1.0 

45 
.658319 

1.73  .06 
.665017 
1.78 0.14 

.678028 
1.84 -.40 

.724704 
2.0  -.88 

.584382 
1.5    .82 

60 
.771771 

1.78 -.07 
.778250 
1.8  -.26 

.792361 
1.84 -.51 

.833938 
1.97 -.97 

.701686 
1.9    .58 

75 
.843008 

1.71 -.21 
.848296 
1.69 - 37 

.861652 
1.71 -.59 

.902737 
1.81 -1.01 

.787603 
2.1    .3 

90 
.852944 

1.52 -.32 
.856387 
1.47 -.46 

.867334 
1.45 -.61 

.902666 
1.52 -.97 

.819071 
2.2    0 

105 
.793915 

1.23 -.44 
.800355 
1.16 -.50 

.807885 
1.11 -.61 

.833744 
1.13 -.86 

.787602 
2.1    .3 

120 
.695400 
.85 -.50 

.695213 
.76 -.52 

.699234 

.68 -.55 
.714439 
.66 -.72 

.701870 
1.9   -.58 

135 
.570134 
.42 -.55 

.569134 
.31 -.50 

.570494 

.21 -.46 
.576718 
.14 -.48 

.584450 
1.5   -.82 

150 
.456683 

-.04 -.55 
.455901 
-.17 -.46 

.456161 
-.28 -.35 

.457484 
-.38 -.24 

.467106 
1.1  -.10 

165 
.385445 

-.49 -.50 
.385854 
-.61 -.36 

.386870 
-.74 -.21 

.388685 
-.88   0 

.381189 
.56 -1.1 

180 
.375510 

-.92 -.43 
.377763 
-1.04 -.25 

.381188 
-1.15 -.02 

.388756 
-1.32 -.28 

.362732 
0   -1.1 

C   =   .05,     D  =   .45 
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bends with increasing a the K_ factor increases as K  is 

seen to decrease.  At ß = 90°, the load is applied normal 

to the straight crack and, as expected at a= 0, K = 2.36 

and K__ = 0.  Increasing the bend angle a results in de- 

creased values of KT with commensurate increases in KTI. 

The results for a constant bend angle a, say 30°, as a 

function of loading angle 8, are also of interest.  As the 

load approaches the neighborhood of perpendicular align- 

ment with the bent crack, for example ß= 60° for a - 30°, 

the Kj  factor and the strain energy release rate reach 

local maxima.  As the load angle 3 sweeps past this neigh- 

borhood and becomes parallel to the bent crack, crack 

closure occurs as indicated by negative K? values.  For 

a = 30 , this first occurs between 8 = 150° and 165°. The 

model developed in this study includes no provision for 

crack surface contact under compressive loads; thus, the 

results for negative KT are of little interest. 

A careful examination of the strain energy data in 

Table 4.3 for ß>120° and a >  5° indicates lower calcu- 

lated values than the corresponding strain energy for the 

straight reference crack a=o.  This indicates a negative 

strain energy release rate contradicting the physics of 

the problem.  It is noted that in all cases where this 

contradiction occurs the strain energy differences are 

quite small.  The error study performed for ratios of 

C/D = .05 indicates that a 3% error might be expected in 
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the results of Table 4.3.  All of the questionable data 

in Table 4.3 can result in a zero or slightly positive 

strain energy release rate when a 2.5% or less correction 

factor is applied.  The results would then be consistent 

with the expected physical behavior. 

An analysis of the data to predict the initial 

direction of crack growth as a function of load is readily 

performed using an energy criterion.  Given a fixed a  for 

C = .025 and D = .50, the resulting strain energy as a 

function of ß is compared to the results for the straight 

crack when C + D = .5 for the same ß load.  The maximum 

strain energy release rate is used as the criterion for 

determining direction of crack growth.  The results are 

shown at 10  increments in Fig. 11, along with the re- 

sults for a bent crack geometry in an infinite medium re- 

ported by K. Palaniswamy (36).  The change in strain ener- 

gy as a function of a and 6 is found to have a relatively 

flat maximum extending over a range of 10 to 15°.  The 

sharpest maxima occur for values of a near zero and B near 
o 

90 .  The data in Fig.11 have  bars indicating an estimate 

of the error incorporated in numerically selecting the 

critical values.  These flat maxima have been studied by 

J. Swedlow (45) for similar problems of interest.  He 

appropriately concluded that small changes in local micro- 

structure could strongly influence the growth direction 
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making experimental study difficult.  He presents both 

analytical and experimental evidence to confirm this 

behavior. 

The numerical results for the bent crack problem in- 

dicate the presence of a critical angle  a .  This critical 

angle manifests itself through the geometric influence co- 

efficient matrix [C] which develops a zero determinant for 

a = a  and results in large values of KT,KTT and E  as a C * I' II      s     c 

is approached.  The geometry reported in Table 4.3, rep- 

resenting a C/D ratio of .05, shows that a  equals 78 

(to the nearest degree).  Lower values of C/D lead to 

similar results while larger C/D values produce lower 

critical angles.  These results are summarized below. 

c D C/D u 
c 

.015 .50 .03 78° 

.020 .50 .04 78 

.025 .50 .05 78 

.050 .50 .10 63 

.100 .50 .20 58 

.150 .50 .30 46 

.200 .50 .40 42 

.300 .50 .60 38 

.400 .50 .80 35 

It should be noted that the numerical value of the deter- 

minant for all problems is quite large (10   to 10  ). 

This determinant remains relatively constant for values 

of a< (a  - 5 ) f then decreases rapidly.  Once past the 
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critical angle  a the determinant assumes large negative 

values.  The KT calculated for a> a becomes negative, 

thus the results for K ,K T and E , for ct> a are invalid. 

"As background to this problem recall the work of 

Sternberg and Koiter (39).  Their studies for an open 

wedge geometry subjected to a concentrated moment at the 

tip focuses on the break down of the solution for wedge 

angles of 257.45 degrees (this corresponds to a = 77.45 

for the bent crack geometry). Westmann (40) showed that, 

at ct= 77.45 , a second singular contribution may enter 

the analysis while only one singularity exists for a>77.45. 

His work centers on the geometric effects in adhesive 

joints and illustrates the importance of this second sin- 

gularity for both the development and elimination of stress 

intensity factors at the wedge vertex.  K. Palaniswamy (36) 

discusses the existence of a critical angle for Mode II 

loading and reports a value of 77.4 .  He does not enter 

into detailed discussion but indicates the existence of 

qualitative experimental results taken in the neighbor- 

hood of a . c 

Certainly, the existence of a     as at least a mathe- 

matical phenomenon is well documented. However, the work 

of Westmann, Palaniswamy and experimental observations 

for Mode II loaded cracks leave  open to question whether 

a  is indeed a physically real limit upon the crack growth 

direction. 
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The resulting lower values indicated for  <*  as the 

bent crack C  extends, are in contrast with Palaniswamy's 

results.  Since he reports in Fig. 12 of (36) increasingly 

permissible bend angles for increased values of C, the 

bent crack length.  The results presented in (35) are 

obtained for a bent crack in an unbounded domain while 

the problem considered here is for a bent edge crack in 

a finite disk.  The contrasting differences in the two 

results may be caused by crack tip interaction with the 

boundary and severe bending induced for larger C/D ratios, 

features not present in the problem considered by 

Palaniswamy. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE APPLICATIONS 

The results presented herein demonstrate the 

application of integral equation analysis to two-dimen- 

sional elastostatic fracture mechanics problems.  A solu- 

tion method is developed for analysis of general closed 

edge cracked bodies subject to traction loading.  This 

method is demonstrated using example problems with known 

solutions, the results for KT, KTT, and E being accurate i   II      s 

within one percent.  The bent crack geometry illustrates 

the application of the method to an asymmetric complex do- 

main which incorporates the effects of singularities at 

the bend vertex. 

The application of this solution method to more gen- 

eral two-dimensional edge cracked problems is possible. 

However, the practical limitations of the method should be 

clarified.  Section 2.3 discusses the solution for a gen- 

eral plane cracjced body.  In the closing portion of Sec- 

tion 2.3 it was implied that a body, with m external 

cracks and N parametric relationships describing them, will 

require a (4N + 2) system of coupled integral equations to 

be analyzed and solved.  Therefore, the bent crack requires 

ten such equations.  Geometries with non-circular outer 

boundaries requiring multiple parametric representation 

(say N») lead to further expansion of the equation set. 
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The formula determining the size of the equation set now 

becomes 4N + 2N2« - For example, the simple rectangular 

plate with one bent edge crack requires five parametric 

expressions for the outer boundary and two for the crack 

faces; a system of 18 coupled equations results.  Thus, 

analysis of complex geometries by the method represented 

herein may require manual manipulation exceeding the prac- 

tical value of the solution.  Future developments in com- 

puter software technology may alleviate this difficulty. 

It is currently possible to construct programs such that 

the geometric coefficients resulting from most of the equa- 

tions are automatically calculated from simple boundary 

surface data.  The computer derivation of the equations re- 

sulting from the limiting process, 1J1 +0 and differentia- 

tion, w.r.t. ip  is beyond the current computer software 

technology.  Successful development of this technology will 

permit practical application of this method to complex 

geometries without extensive problem preparation. 

For the present, analysis of complex structures us- 

ing finite elements is possible.  This method incorporates 

special singular elements adjacent to the crack tip and 

provides the analyst with an accurate tool for the deter- 

mination of stress intensity factors in complex geometries 

(17,46-50).  The circular element with bent crack developed 

in this study may possibly be incorporated as the special 
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element enclosing the crack, tip.  This will allow study of 

complex geometries with bent cracks,and at the same time 

incorporate all of the advantages of the finite element 

method. 

The success achieved using integral equations in 

the analysis of two-dimensional elastostatic problems led 

Cruse (21,22,51) to the natural extension of the solution 

capability to three-dimensional problems.  In (51) he pre- 

sents the B.I.E. for three-dimensional problems valid for 

reference points P(x) not located at an edge or corner. 

His equation (14) yielded: 

j u.(P)   +       Ui(Q)   TU(Q,P)   dS ti(Q)Uij(Q'P)ds(Q) 

(5.1) 

where: 

0 1 1        3   •    4v      . 1 _     r 
01 A    +   TTi    ~\    r t A r i ij        4 Try   r       4(1   -v)   u"'"        4 (1   -v)   '' ' l   ' j 

K  =      (1  -   2v)/2(l   -v) 

f       -     -K       I     IH   t*        +  ——- 
ij 4TT      r2  *3n      l'ij       I   -2V 

r'ir'j>   "  njr'j+njr'j 

where the integrals are interpreted in the sense of the 

Cauchy principal value and the notation is similar to that 

in Chapter 2.  Eq. (5.1) can be viewed as the governing 

equation relating surface tractions to surface displace- 

ments.  Eqs. (2.14) present the equations for the two- 
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dimensional problem.  The mathematical character of Eqs. 

(2.14) and (5.1) is similar, leading to the speculation 

that the solution method developed and verified for anti- 

plane and plane two-dimensional problems can be extended 

to three dimensions. 

In summary, this work extends the B.I.E. developed 

by Rizzo to the application of closed crack geometries. 

It demonstrates that accurate numerical solutions can be 

obtained by this method for finite, asymmetrical cracked 

bodies. 
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APPENDIX A 

GEOMETRIC KERNEL FUNCTIONS 

This appendix presents the geometric kernel func- 

tions for Eq. set (3.1) which apply to the geometry of 

Fig. 7.  The one hundred kernels are presented in twenty- 

five sets of four.  Each set has a heading Ker L M where 

L, M have values 1 tc 5.  The L index defines the reference 

surface T, and the M index defines the field surface T„ L M 

to which the kernel corresponds. 
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r *'«"••""  

Ker 11 R2    =   (p - B)2 

               ~"11 

KIU= 0,    KIIn= ^_ 

KIHll= £*£  ,     KIVU=   0 

Ker 12 
_ 2 2 

£2    =   [xi-E-B-cos(a-iJ(o)]     +   [ctanijio  -C-tana +B*sin(g-iJ>0)3 

KIi2=< [* Ma.)2!    r« M-4• y (Xl-E-B-cos (a-^nh      rC-tana -C-tarnj)n-B-sinfa-ij)n) 

= JM.4       fxi -E-B-cos(a-flo)1 fctan^n-C'tana +B-sjn(g-4'n)] KIIi 

-,. 1 
+ K   •      [Xl-E-B.cos(a-^0)]/R

2       > 
~12 

KIII12  =< M-4-u [Xl-E-B-cos (a-i^n)l   C-taniJin-C'tana+B-sinCa-tl/n) I 

"12 

K •   [xl-E-B-cos(g-<Ji0)]   /B2     ] 

KIV12 = |   K -  M-4-y rc-tani^n-C'tana +B'sin(a-ij;n)] 
2, 

f-C-tantyn+C-tang-B-sin(g-^n) 1    I 

"12 
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Ker 13 

R2 
~13 

= [cos9-E-B.cos(a-iJ>o)] 

+ [sin0-C-tana+B'sin(a-t|io)] 

KI,, = 13 

*• -13 

Tl-E"COS0-C-tana•sinO-B•cos(0+a-i|>o) 1 /R2 I L ~13 f 

KII13= <-M'4*vi[cos0-E-B.cos(a-^o)^l [sin0-C-tana+B'sin(a-iJio)] 

• Tl-E" COS0-C- tana. sin0-B-cos (0+a-i|>n )1 /R1* 
L -13 

+ K- |E*sin0-C'tana'COS0+B-sin(0+a-iJ»o)]/R2 \ 

I 
KI1I13 = S-M'4-y ^os0-E-B-cos(a-i|»o)] [sin0-C*tana+B'Sin(a-\(;o)] 

• fl-E'COS0-C'tana-sin0-B-cos (O+a-^njl/R'* L -13 

-K[E-sin0-C-tana•cos0+B-sin(0+a-<|>o)] /R2 I 
1 0   [ 

KIV13= 1 
_„ .   fsin0- C-tana+B'sin(a-<|<n)] K-M' 4 'VT    •"*'" 

2-, 

[l-E • COS0-C • t.na • sin0-B • cos (0+a-t|»of] /R2 

I 
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Ker 14 

  2 2 
R2  s[xi-E-B-cos(a-iJJo)J   +[-C-tain|/o-C-teuia+B-sin(a-i/*o)J 

KI lk= j [K-M- 4-p 
[xi-E-B-cos(a-t()n)1 

2H 

1 

f 
KIIi4=   <,-M.4'H 

I Xl-E-B'cos (a-i<;n )1 r~C* tantfrn+B • sin (a-ifrn) ~C- tana] 

-K- Lxi-E-B-cos(a-i|«0)J/R: 

14 1 J 

_     .     f Xl-E-B • cos (a-^n )1 f-C- tani|>n+B. sin (a-ifrn) -C- tanal KIIIji,   = 

~l«t 

+ K  • [xi-E-B-cos(a-*0)]/R
2 

1 

KIVlt|   = 1 
L 

K_M.4.» f-C- tanifrn+B- sin (a-ipn) -C-tana] 

R^ 

[-C-tan^o+B-sin(O-^Q)"C*tana] /R2 
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pwt«    - "•'•^•""' 1 

Ker 15 

R2    = p2+ B2 -2-p'B.cos 2-<|»n 
~15 

KIl5 H [K-M- 4• y • ^'COS (a^n} ~B'cos (a~ 

i  -B-3in2ij>n 
L „2 

V 

KIli5=4J+M-4'U  •   [p*cos(a+i('o)-B-cos(a-i|»o)3 [+p"sin(a+i(»o)-B-sin(a-ij»o)j 

Q-B-sin 2*o]/R"    +    K  r-P  +B-cos 2»|J 
~15 n2 

Kill!5 =-j+M-4*y[p-cos(a+iJ)o)-B*cos(oi-i(;0)J [+p'sin(a+i|io)-B'sin(a-\j»o)j 1 
O-B-sin 2 a]/R** -KT-P+B-COS 2\|>Q1 

R2 

~15 

KIV15= jhc-M- 4«y IP'Sin(a-m)n)~B 

-B'Sin 20n 

-15      J 

R^ 
~15 

•sin(a-i<)n)] 
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Ker 21 

2 2] 
& =  ^(E+p-cos(a-^o)-B2)   +(C-tanoi-p-sin(a-iJio)-c-tan<l>  )    \ 
-21 1 
KI2i = K-M-4-H      (E+P-cosCa-^j-Bp) 

2l 

[(E+p-cos(a-i^o)-B2) (-sin(a-ij>0)) 

21 

+ (C-tana-p-sin (a-i/>0)-C-tani/i0) (-cos(a-i)i0) )J/R2   > 
"21 I 

KII2i= <-M*4'VI[E +p-cos(a-iJ)o)-B2]^'tana-p-sin(o-i/)o)~C*tan^o]' 

[(E+p-cos(a-i(/o)-B2) (-sin(a-^o)) 

+ (C- tana-p • sin (a-^o) -C-tarnen) (-cos (o-ij/n) )1 /R1* -2l 

+ ~2^(E+p-cos(a-ij)0)-B2) (cos(a-t(/0)) 
~2\ 

+ (Ctana-p-sin(a-^0)-C"tani|io) (-sin(a-^0))] 

KIII2i=  S-M'4-p[E+p-cos(a-)()o)-B2] [c* tana-p -sin (a-iJ<o) -C-tan^o] 

£lE+p-cos(a-4>o)-B2) (-sxn(a-i|>o)) 

+ (C« tana-p • sin (a-ij/o) -C« tani|>o) (-cos (a-^o) )1 /R** 
"""21 

^2[(E+p-cos(a-ij>0)-B2) (cos(a-^o)) 
~2\ 

+ (C*tana-p-sin(a-i(io)-C,taniJ'o) (-sin( o-*o)>][ 

KIV21=     [K-M-4-P     <C>tana-p   • sin <a-»n)-c-tai.fr,>  j 

R2 
I. -21 

[(E+p'cos(a-^0)-B2> (-sin(a-i^o)) 

+ (C- tana-p • sin (a-i|i0) -C- tani|/o) (-cos (a-<J;0))] /R2 

"21 
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• 

Ker 22 

2       =   (Xl-B2)2 

-12 

KI22  =  0 

KII22-    -ff B2 

KIII22 "     " Xl-B2 

KIV22 •    0 

92 

L mil Mil in <•--•—••   - -  - -^ 



Ker 23 

32    = 
2 2 

Rz    =   (cos0-B2)   +(sin0-C-tarnen) 
~23 

„T    _ JL      M-4-n(cos9-B?)    Ifl-By-cos©- C'tan»n-sin0l' 
«2 3-   [K ^2 «-f[ £2 ^  

l ^23 L -23 

KII23= j -M'4-p|}:os0-B2] [sin0-Ctan i|»0J 
i. 

i-B?'cos0- C'tani^n'sinO 

~23 

+ K-[B2-sin0- Otani|)o-cos0~]/R2 

"23 

KIII23= < -M-4-ji[cos0-B2] [sin0-c-tani/>o] 
I 

"l-Bp'cosG- C-tanipn'sin0] 

- K-[B2-sin0- C-tant|)o-cos0]/R2 

~"23 

RH 

-123 
J 

KIV23= < K-  M-4-y (sin9-C'tani|/n) 
2, 

"23 

l-B2-cos0- C'tanipn'sin© 

^23 
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Ker  24 

~2*1 

KI2t» 

  2 2 
= i (Xl-B2)   +(-2-C-tan<|>0) 

[„,.«.„    g^l^'gt^] 
~2«» 

R" 

KII2it  = -M-4-y[xi-B2] ^-2•C•tan^^lo]2/R^ 

~2k      J 

KIII2J»  • 
2 

* -M-4-y[xi-B2] [-2'C-tan*o]  /R1* 

+ K 
Xl-B? 

R^ 

KIV2tf 
M-4-y(2-C-tan\|>n)' 

-2i» 

-2'C-tan»n 

*"a«i 
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—^——•— 

Ker 25 
. 2 2 

R*    =   (E+p-cos(a+i^0)-B2)     +   (C-tana-p-sin(a +iJ>o)-C-tan>J'o) 

KI25=  j 0- 

i 
M'4-M   (E+p(cos(a+ ̂ n)-B?)^| r 

(E+p-cos(a+ij;o)-B2)   sin(a+<J>0) 

"25 

+   (C-tana-p •sin(a+i/)o)-C-tan^0)   cos(a+i|ig)]/R2 

KII25= -M*4IJJE+P • cos (a+ipg) -B2] [c- tana-p • sin (a+<JiQ) ~C- tani^oJ 

• [(E+p-cos(a+0o)~B2)   sin(a+^o) 

+ C- tana-p • sin (a+t^o) _C' tanipo]Lcos (a+<|>o)] /R1+ 

^25 

K   r* + p|jE+P'cos(a+<M_B2) (~cos(a+ij)0)) 
"25 

+(C-tana-p • sin (a+i^g) -C-tantj>o) sin(a+i{io)J 

j 

KIIl25= S-M-4-M[E+p'cos(a+^o)~B2] [c*tana-p• sin(a+i/>o)-C'tani/>o] t 
• [(E+p • cos (a+^o) ~B2)   sin (a+i|>o) 

+ C>tana-p-sin(a+i|)o)-C-tan^o] [costa+^gJj/R1* 

" ^2 [(E+P-cos(a+^0)-B2) (-cos(a+ij/0)) 
~25 

+ (C* tana-p • sin (a+i(i0) -C- tan^o) sin (a+^o)J 

J 

KIV25   • 
M-4'p (C-tana-p • sin (a+ifrn) ~C- tanifrn) 

-25 

[(E+p • cos (a+i^o) -B2) sin (a+ipg) 

+ (C tana-p • sin (a+^0) -C- tan<J)0) cos (a+i^o)] /R2 

~"25 
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Ker 31 

>2 = R* = s (E+p'cos(a-\j;o)-cos0o) + (C'tana-p-sin(a-il>o)-sinQ ) 
"31 °  J 

KI*i = '31 
K_M. 4. y(E+p-cos(g-ij>n)-cos6n) 

-31 

MB* sin (a-i|»o) -C* tana- cos (a-ifiQ) +sin (Go+o-^n) 1 /R2 > 
~31 

KII31= < -M* 4-p [E+P • cos (a-iJiQ) -COSGQ! (C* tana-p • sin (a-i|»o) -sinGo] 

Q-E- sin (a-^o) *C* tana • cos (a-i|>o) +sin (QQ+O-'I'O ^1 /JL** 
31 

+ K" [E-cos(a-\j/0) -C" tana- sin (a-i|>o) +p-cos (Qo+a-^o)]/£2 

31 

KIIl3i= <-M'4'vi[E+p-cos(a-i/'o)-cosQ(j] [C'tana-p'sinta-^oJ-sinGp] .1 
Q-E- sin (a-i|»o) ~C* tana* cos (a-ijio) +sin (QQ+U-^Q )~] /R1* 

31 

- K-[E«cos(a-iJ;o)-C*tana*sin(a-^o)+P~cos(6o+0~,''o)]/B2   I 

KIV31  =       Fk-M-4-p   (C-tana-p-sin(a-ij;n)-sinQn) 

[' "31 J 
|HI« sin (a-i|/o) -C« tana -cos (a-t|»o) +sin (QQ+O-^O)] /R2   I 

~31f 
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—>_—- ~n 

Ker 32 

R2       =   (Xl-cos0o)2 +   (C-tanipo-sin0o)2 

32 

KI32 =  < 

[L 
M-4-y (Xl-cosQn)z-i 

R* _32 

sinGfi-C'tan^n  ' 

"32 

KII32 =   ) +M-4-ii[xi-cos0o] [ c-tan^o-sinGol /R4 

I -32 

K  • [xi-cos0o~)/R2 

~32 f i 
KIII32 = i M-4-y[}ä-cos0o] [ C-tanijjo-sin0o]   /R4 

I 32 

-   K   • [X1-COS0O1/R2 

~32f 
J 

KIV32  = i 

[' 
K_M. 4. ^(C-tan^n-sinGn)2 

R" 
"32 

sin0fi-C-tan^n 

"32 
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r 

Ker  33 

R2    =     2   •   (l-cos(0-0o)) 
~33 

KI33 = i [K-M-4-I (cosO- cosGn) 

"3 3 )l>] 
.    |_M^£.sin2(<D±£0) 

KII33 -j+ ^j^- [sin(0+0o)]   + cos( ^2^°) 

sin( -~u) 

M-4-U Kill33= \ + —j-t -sin(0+0o)   - j • 

,0-00, 

.0-00. 
sxn<2     } 

KIV33= K M-4-W 2    ,0+00, 
2    " ~2        '   cos     ( 2    > 

J 
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. HMIll, II.. 

Ker 34 

R2    =   (Xl-cos0o)2 +   (-CtarnJ)O-sin0o) 2 

*I34 " K-M^.^-"86^ 

"34 

•sin0n-C'tan\|>n 

R2 

~34 

f 2 
KII34 =  j-M-4-y(xT-cos0o] [c-tan^o+sinOgj/R1* 

Qn-Xll/R2     ? 

34 

K  • [cos0o-XlJ/R: 

34 

Kill 34 =   <,-M-4-u[xi-cos0o] [c-tanijio+sin0o]   /R4 

_ 1 
K  • [cos0o-XlJ   /R2    > 

34 

KIV 34 
K_M.4.p   (C-tanij,n+sin0n)2 

"34 

r-c tanijin" Sin0n 

R2 
_34 
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Ker 35 

£2    «(E+p-cosCa+il/QJ-cosOo)2 +   (C-tana-p-sin(a+ii)O)-sin0o)2 

KI,, = I TK-M-4-U   tB+p-co8(n+»n)-co8en)J i 

-35 

[E- sin (a+^0) +C- tanacos (a+<|>0) -sin (a+^0+©o) ] /R2 

~35 

KH35  = -M- 4 • y [E+P • cos (a+iJ»o) -COSGQ] [C
;
 tana-p • sin (a+i|i0) -sin0o J 

• IE' sin (a+<|>0) +C- tanacos (a+\Ji0) -sin (a+i|>o+0o)] /R1* 
-35 1 

+K[-E-cos (a+iji0) +C- sin(a+ij>0) • tana-p+cos(©o+a+i|>o)]/R2 

35 i 
KIII35 "   1 -M*4*»[B*P*CO«(a+i|»ü#   cos0o][c*tana-p-sin(a+\|»o)-sin0o] 

[E-sin (a+i|»o)+C-tanacos (a+\|>o)-sin (a+\|»o+0o)]/RJ| , 
"35 

-KQ-E-COS(a+i|)0) +C' sin(a+iji0) • tana-p+cos(0o+a+t|»o)]/R 
35 

KIV35  =  , f ..     (C- tana-p • sin (a+*l»n) -sin0n)2 

-35 

[E- sin(a+t|<o) +C. tanacos (a+i|i0)-sin (a+i|>o+0o\\ /J*2 1 
3 5 
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=••* .i"HW!H)P" 

Ker 41 

R2    =   (E+p-cos(a-<|)o)-B2)
2+   (O tana-p-sin (a-i|io)+C'tan<l>o)2 

~U1 

Ktm  = K-M'4-p (E+p • cos (a-<l>n) -B?) 

-i+l 

[(E+p-cos(a-^0)-B2) (-sin(a-^o)) 

1 
(C*tana-p-sin(a-t()o)+C-tarn(»o) (-COS(O-I(IQ) )] j/R2 

( 
KII41  =   j -M-4ij|:+p*cos{a-i|/o)-B2] [c*tana-p-sin(a-ii<o)+C-tani/)oJ • 

QE+P • cos (a-ifj0) -B2) (-sin (a-t|i0 J) 

+ (Ctana-p-sin(a-iJio)+C-tan<J;o) (-cos(a-i|)0) )]/Rt* 

K 
I2 

~V1 

+ -2[(E+P'cos(a-^0)-B2) (cos(a-^o)) 

+ (C-tana-p'Sin(a-^o)+C-tamJ)0) (-sin(a-i|>0))] 

KHIm  =     j  -M-4-p[E+p-cos(a-^o)-B2] ^•tanot-p-sin(a-iJ)o)+C'tan*o3 

[(E+p-cos(a-^0)-B2)(-sin(n-^o)) 

+ (C-tana-p-sin(a-)|>0)+C-tani|>o) (-cos(a-i(i0) jJ/R1* 

K    r 
"  ^2   L(E+P"c°s(a-tJJo)-B2) (cos(a-i)io)) 

+ (C* tana-p • sin (a-i/^) +C' tani^g) (-sin (a-^0) )1 1 

-T»] 

-»»1 

KIV1+!   =   CJK - M-4"i 

I 
(C- tana-p • sin(a-iJin)+C- tani|in) ? 

~U1 

Q(E+p • cos (a-i^o) -B2) (-sin (a-i//0)) 1 

+ (C tana-p • sin (a-^0) +C• tani|/0) (-cos (a-<|i0) )][/£? 

— 
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Ker 42 

R2 = {(Xl-B2)2 +     (2-C-tanij(0)2 

KI42 = 
M-4-p(Xl-B?)' 

-T»2 

-2'C-tanifro 

->*2 

Kii^a = +M'4-VJ(X1-B2) (2-C-tam);0)2/R'* 
~U2 

+ K 

KIIIi^  = +M-4-P   (Xl-Bo) (2-C-tan^o)2/Rl* 
-it2 

-  K 
XI   -   B; 

-42 j; 

KIVi^  = K-M-4-P 
(2-c-tam|<n)2 

-«t2 

^•C^tanipn 

R^ 
-«•2 
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Ker 43 

R2 = (cosO-B2)
2+ (sin0+C-taniJ»o)

2 

~k3 

KI 43 • I TK-M-4-P (cosQ-Bo)2 

-U3 

1-B?•cosQ+C-tampn'sinQ 

-»•3 

KÜ43  =    <, -M-4-U (cos0-B2) (sin0+C-tanij>0) (1-B?-cosQ+C-tarnen'sinQ) 

+ K[ß2-sin0+ C tan\\i0 • cose]   /R2 

~43 

~43 

Kill«   = .. A     i      «    ~ i i  .i  A^m *     ,v (1-Bo'cos0+ C-tani^n'si -M-4-ji(cos0- B2) (sinO+C-tanipg) •      
n0) 

->43 

K[B2-sin0+ C-taniin-cos0l   /R2 
J     —1+3 

-        ._   (sin0+ C-tanifrn)2ir l-B7-cos0+ Otanifrn'sinO KIV„3 = It 
-W3 

103 

-»-^—"•»---^ •-•       i   inJi 



  

Ker 44 

R2 =      (XI   -  B2)2 

KIi^  -     0 

KII^  =    ^~ 
XI   -  B5 

KHIitit  =     ~ 
XI  -  B2 

KlVim  =     0 

104 
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Ker 45 

R2    =   (E+p-oos(ot+i|<o)-B2)2 +   (C-tana-p-sin (a+i/>0)+C'tan^0)
: 

KI45 = K-M-4.w
(E+p-cos^n)-B?^+p.cos(a+l<)o).B2)sin(a^o) 

R 
~W5 

+ (C-tana-p • sin (ot+ipo) +C- tan\|>0) (cos (a+\Ji0))] /R2 

h5 

KII45 = <j-M-4-p(E+p-cos(a+iJ>o)-B2) (C-tana-p-sin(a+i()o)+C-taniJ/o)/R'* 

• L(E+p'cos(a+();o)-B2) sin(a+i()o; 

+ (C- tana-p • sin (a+i|>0) +C* tan^o) (cos (a+ipo))] 

+ p[(E+p-cos(a+^0)-B2) (-costa+ijio)) 
~it5 

+ (C-tana-p • sin (a+i//0) +c- tani//0) sin (a+i/>0 )J 

KIIIi»5 = \-M' 4• y (E+p • cos (a+^o) -B2) (C-tana-p • sin (a+^o) +C* tani|>0) /R 

• |_(E+p-cos(a+\j»o)-B2) sin(a+\|^o) 

+ (C-tana-p • sin (a+ifig) +C- taniJiQ) cos (a+\J>o) ] 

^2   [E+p-cos(a+i);0)-B2) (-cos(a+ijj0)) 

+ (c-tana-p • sin (a+iJjQ) +C• tamji0) sin(a+i^0)J 
"T»5 

KIV45 «Irk- M 4     (C-tana-p-sin(a+4>n)+C-tan^n) 

|L R2 ] 
[_(E+p • cos (a+ij>o) -B2) sin (a+i^o) 

+ (C- tana-p • sin (a+4«0) +C- tanijj0) • cos(a+<Jj0)J/R2 
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Ker 51 

R2    = p2+B2  -2'pB'COS 2^0 
"~51 

KI51   = [' 
._      .   (p-cos (g-i|<n) -B'cos (ot+ifrn))  1 r -B-sin 2\\>g 

°2 JL R2 
"51 -51 

KII51  = -1 +M-4«iiLp-cos(a-^o)-B-cos(a+to)] 

[p-sin(o-^o)-B*sin(a+^o)]   •[ **j   + 

"51 

r-B-sin 2i|<n-|   + R .   rP-B-cos 2»n 1 

L        R^        J L *2 J —51 L _51 J 

KHI5I   =   1 M*4-y [p-cos(a-<(/o)   - B-cos(a+^o)] 

-B'sin 2^n"l       vr p-B'cos 2if>n 
[p • sin(a-»0)-B- sin(a+»0>J ' [       ""    •]   " *[" 

L    _51       J        L 
-51 ] 

KIV51    = pk-M -M-4-U (p»sin(a-^n)-B.sin(a+^n))2 f |~ -B-sin 2^0 -1 

«i JL   #   J 



Ker 52 

£*, =   [xi-E-B.cos(a+ij»o)]2 +   [c-(tant(»0-tana)+B.sin(a+^o)J2 -52 

KI52 = < 

IL 
rK_ M'4-\i (Xl-E-B-cos (a+ifrn))2 -| 

~52 

f-C (tani|i0-tana) -B- sin (o+*0 )J /R2 

52 
J 

KII52  = i M
.a.p[xr-E-B-cos(a+i))o)l   •   fc- (tanfrn-tana)+B-sin(a+tf)n)l: 

"52 

+  K   *    [)ä"-E-B-cr>s(ci+t|<0)l/R 2      \ 
52    ' 

Kill52 =   -j n.4-wrxr-E-B-cos(ct+»nri • fc- (tainl>n-tana)+B-sin(a+il;n)~l: 

-
52 

- K  •   [xr-E-B-cos(o+i(.o)J/R2 ] 
52 

KIV52    =   J   fk - M-4-w   (C-(tan»n-tana)+B-sin(u-i-tn)): 

E "52 J 
[-C- (tani()0-tana)-B-sin(a+)|<0)]/R

2 

152 
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Ker 53 

R2    =[cos0-E-B-cos(a+i|»oO2+  [sin0- C-tana+B-sin(a+i|)o)J2 

KI53 = 
M'4-p (cos0-E-B-cos(a+i|»n))' 

~53 •J 
V 03 > 

[l-E-cosO-C-tana-sinG-B-cos(0+a+^o)]/R2    [ 

-L KII53 =   I -M-4-vi[cos0-E-B*cos(a+iJiof| • [sin0-C-tana+ B'sin(a+t|i0)J 

• QL-E*COS0- C«tana>sin0-B-cos (O+a+^oJl/R1* 

+ K • |_E«sin0-C-tana-COS0+B-sin (0+a+ipo)J/R: 

5 3 

KIII53 = {-M-4-y[cos0- E-B-cos(a+i|>o)J-Csin0-Crtana+B'sin(a+<J»o)] 

• [l-E* COS0-C- tana • sin0-B* cos (0+a+^g) J /R1* 

- K-[E-sin0-C-tana-cos0+B-sin (0+a+iJio)]/R
2 

KIV53 = M^'PtsinO-C'tana+B'sinfo+ilin)) 2 - 

"53 

Q.-E-COS0-C'tana-sinG-B-cos (0+a+tJ)O )1/R2 

53 
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Ker  54 

R2 = [xi-E-B-cos(ct+ip0)]
2 +   [-C-taniJ>o-C't:ana+B-sin(a+(|/o)J2 

54 

KI 54 [' 
M-4-u(Xl-E-B-cos(a+il)n» 

R2 

-54 

r-C-tarnjiQ-C-tanot+B- sin(a+i|<n)   -r J 

L t. J -54 

KII51| = ] -M- 4gifxT-E-B- cos (a+ilm) "l'f"-C- tanif>n-C- tanot+B- sin (ot+i|>n )1 2 

K • [xT-E-B-cos(a+i|/0)]/R
2 

54 j 
. [xi-E-B-cos(ct+i|)n)l • r-Cttant|<n-C-tana+B-sin(a+it'n) I2 

Kill 54 I "54 

+ K   • [Xl-E-B-C0s(a+\JJ0)]/R
2 

54 

KIV      _ I  pK _ M^-yr-C-tanilin-C-tana+B-sinfa+iiin)!2 

u •54 

Ker 55 

•C'tan^n-tana+B*sin(a+ifrn) 

~54 

R2   =   (p-B)2 

~55 

KI55 

K"55 

=     0 

p-B 

KHI55 
K 

p-B 

KIV55        =     0 

I _  
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APPENDIX B 

GOVERNING B.I.E. FOR CLOSED BENT CRACK 

This appendix contains Eq. set (3.2), the governing B.I.E. for the 

closed bent crack (VQ • 0).  Section B.l presents the full set of equa- 

tions.  Section B.2 presents algebraic formulas inserted into these 

equations depending on the assumed displacement model.  Section B.3 

contains the detailed forcing function formula necessary for general 

traction loading. 
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Appendix B.l 

Full I.E. Set  (System 3.2) 
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ma^m 

Define:   ' 

R2    = [xl - E - B  •   cosa] 2+   [-C •   tana + B  •   sinaj • 
12 

R2    = [sinO - E - B  -   cosa]2+   [sin© - C  •   tana + B-   sina]2 

13 

R2     =I~E + P   "   cosa -  B2]2+   [c  •   tana -p •   sina]2 

21 

R2     EHL -  2   •   B2   '   cosO    + B2] 
23 

R2    =[E + p   •   cosa - cosG0]2 +   [c  •   tana - p   •   sina - sinG0]
2 

31 

R2     =(l  -  2   •   xl •   cos0o  + XI  2J 
32 

112 
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"     

J\ X        CU1 (B) J 
F 

M- 4 • V(Xl-E-B-cosa)2i 

J R2 

12 

[C'taiy^-B-sing ] 
dXl    + 

12 
j\w{|> -M-4 *u(cOS0-E-B-COSg)2 

R2 
13 

[l-E-COS0-C-tan«-sinQ- B-cos(0+ct)]/R2 de 

u 
4 (XI) tL 

•     _   M- 4 • u ["Xl-E-B* COSg] 2 

R2 
12 

13 

C'tang-B'sing 

R2 
12 

dXl 

.B-H 

(p)   p-B 
dp 

+   V1(B-H)    '(A1VMH)   +  V1(B)    *    (A1VB)   +  V1(B+H)    '    (A1VPH) 

r± 

J 

B+H 

Kp)      p-B 
dp 

+ V 2 (XI) 
J      .     rxi-E-B'cosgl f-C'tang+B-sing]2 • M-4-uL *•£•£     J 

F 
12 

+  K   fxl-E-B-cosgl/R2       dXl 
L. J      12  ' 

113 
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f2*       I 
+ v    ..      \ -M'4*p[cos0-E-B-cosa]-[sin0-C-tana+B'sinaJ 

[l-E- cosQ-C tana • sinO-B* cos (0+a)] /R1* 
13 

+ K •   [E-sin0-C-tana-cos0+B-sin(0+a)]/R2
3d0 

v4<xT)   ^+H'4'V 
[xi-E-B* cosq]'[+B* sina-C* tana] : 

12 

+ K   [xl-E-B-cosal   /R2   >dXl J 12 

.B-H 

5(p)     p-B dp 

V5(B-H)   '    (A1VMH)   -V5(B)   •    (MVB)   "  V(B+H)   ' (A1VPH) 

J V5(p)      p-B X     '   FA1(B) 

B+H 

3.2.A.1 Cont. 
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I 1 V        M14 • \i (E+p • COSg-Bo )2].f(E+p • COSg-B2) (-sing) 

J    Ul<<» |LK" %x     JL 

+   (Otang-p-sing) (-cosg)1/R2   I dp 
J      21 ' 

u2 
2ir f 

(Bo) COS0-   Bo)Z      1-BoCOSQ + |    Sw^ai^MtAL^ 
R? 

23 

do 

Ulf (Bo) L _  M-4-y(E+p-cosg-B?)2 

5(p)    |_ ir [E+p •cosg-B2) sing 

+   (C*tang-p-sing)cosg]/R2 

21 
dp 

+   I v       .      ',H- M-4-)j[E+p'cosg-B2] JC-tang-p•sing] 

^(E+p*cosg-B2) (+sing)+(C*tang-p*sing) (+cosg)]/R*t 

21 

+ K  •   [(E+p*cosg-B2)cosg +   (C*tang-p* sing)(-sing)J/R2   Jdp 
21J 

-B2-H2 

+ J V2(Xl)    {^i}     ***     +V2(B-H)    *    (A2VMH) 

F 

+V2(B)   -    (A2VB)   +V2(B+H)    "    (A2VPH) 

3.2.A.2 
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¥J V2Öä) 
r2lT       ( 

V1(E)   {rfi2
}  dX1       +j      V3(0)   [-M'4-U[cos0-B2] 

B2+H2 0 

[sin©]- l-Bp'cosO 

23 
+ K • [B2-sin0]/R2      d0 

23 ( 
J 

+j   2     \m)     {x&2
}dX1     -V4(B-H)'(A2VMH)   -V4(B)-(A2VB) 

F 

-4(B)   '(A2VPH)   +J V4(3ä)      {M=i2
}       dXl 

B2+H2 

+ v 5(p) lL -M- 4 • ]i [E+P • cosa-B2 ]*[_C' tana-p • sina] 

[jE+p • cosa-B2) sina + (c • tana-p • sina) cosa] /R1* 
21 

+ K  ["(E+p-cosa-B?) (-cosa)+ (C-tana-p • sina) sina]/R2 Idp =    T-    •  FA2 ,    . 
21) * (B2' 

3.2.A.2  Cont. 
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1  *« {[« 1 r_   M. 4'p(E+p'cosa-cos9n)' 

31 

•[JE-sina-C-sina+sin(0o+a)J/R2 

r1 f- - Jl        M»4-u(Xl 
J U2(5ä)|LK— 

dp 

p (XI  -  cosGn 

32 32 

dXl 

r2ir f l   K M-4-u 

*J      u3(e)   |I"      2 sinz   (—j-"-) d0       " I    U3(0O) 

4-u(Xl  -  cos0n): 

02 
32 -1 *- 32 

I  dXl 

It-K j T    _   MM-utE+p'COSg-COSOn)2 

"5<P>      |L p2 
1 

R2 
31 

[E-sino+C-sina-sin(a+0Q)3/R2 dp 

— | 
+ v <i -M-4-p[E+p-cosa-cosGo]' [c-tana-p'sina-sin0o] 

•[-E-sina-C'sina+sin(0o+a)]/Ru 

+ K -[E.cosa- C-tana-sina+p-cos(0o+a)]/R2 dp 
3.2.A.3 
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f 1 ( _ 
„  .   r—        fl -l fsinOpI *    „ [xi-cos0p] v2öä) r4'4* xl-coseoJ -^ + K • —RT-**

1 

4 32 32 
dXl 

2TT 

• 
3(0) 

M*4-u ! 
| M-sinO+0o) d0 

0O-H3 
.*•%, 

3(0)   1  2       .    ,0-fc)n. 
-i (  2     ) sm( 

d0+    *'     V3(0O+H3)   -V3(0O-H3) 

+J  v30) ihÄ}  d0 + 

0O+H3 

4 (XI) 
< -M.4-yLH--cos0O]^

2 - K.f
X1-^89n] 

R K 
32 3? 

>   dXl 

j        V5(P) -M'4'p[E+p-coso-cos0o],[c«temo-p'sina-sin0o] 

|jB* sina+C- sina-sin (O+0Q )] /R 
31 

+ K  • f-E'Coso+C-sina'tana-p+cos (0n+o)"l/R2  Idp 
*- 311 

—  •   PA3 
\      FAJ(0O) 
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Ul (p) i r"4'P(E+P*COSc,-B2Hotana-p• sina) (-4C) (B?~E-C)sina   "I 
I 21 -I 

21 J    L       R21 
cosa 

+   (B2-E-C)   •   sina   •(C'tana-p-sina)   •  —^° ;]] 
B2-H2 

2 (XI) 
2-P(K-M-4-u)      ,— 

(XI  -  B,) 2 
dX1     +U2(B-H)    '    (A4UMH) 

+U2(B)    '    (A4UB)   +U2(B+H)    '    (A4UPH) 

•   J »„-..   2-C-(K-M-4-,) - 

B2+H2 

2(X1)        (XT-B2)2 

r2ir     f +     I u3(0)   I tM-4-ii(cos0-B2)2(i-B2-cos0) (-4C)   sin0/R& ] 

[K~" 
4«u(cos0- B2)2] 

I? 
23 

2-Csine    .   (l-B2cos0)4C-sino 
R? 

23 
B2-H2 

+  |       "Ujt_.  (-2CMK-M-4-U)     d-    _u 

(Xl-B2) 4 (XI) —_„   ,2 ~4(B-H) 

2 3 

(A4UMH) 

id0 

"U4(B)   '    (A4UB)   *  U4(B+H)    '    (A4UPH) 

•    I        U4 -.  <-2C) (K-M.4-,) - 

W     <xi-v2 
3.2.A.4 
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^^^^^^•pNOTtn* 

•t 5(p) 
,2.„ .               •     \i   «-»(Bs-E-Osin a +M-4-p(E+p-cosa- B2r(C-tano-p*sinc-) (-4C)—<  Rb     

21 

IV«. u J     (E+p-cosa- B?)2!     r 2  •  C 

LL 21 J       L 21 

cosa 

4-C 
+   (B2-E-C)   •   sina  •   (C-tana-p-sina)   •  -gqr 

*J VMP) l[M I, 
4•u•2•C(E+p•cosa-B2) 

21  J 

sina 

1 dp 

J 

21 

,2 (E+C-Bo)   -i] 
[p-cosa-(E+2C-B2)  +4  •   (C-tana-p-sinar ~2        J I 

21 

K-    ^Y •  sina +  [p+(E-B2)cosa-C-tana-sina] 
21 -, 

1 [c-tana-p-sina] (40/R1*    fdp    +v2(ß_H)        (A4VMH) Jr 
+ V2(B)   '(MVB)   +V2(B+H)   '    (A4VPH) 

/• 2ir 
.     „ „  (cosG-Bo —     •      d-B2' cos0+ sin20) 

sin2© 1       „      2C    f2-B?sin20 J 
-4 • (I-B2-COS0)- sjr    + K ' F" • —*F—  " cos0 - cos0   >    d0 

+ v 4(B-H) 

23 

(A4VBH)   + v 2(B) 

23 23 

(A4VB)   + v 

J 
4(B-H) 

(A4VPH) 

3.2.A.4 Cont. 
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•f 5(p) 
sinot 

+M-4-y-2*C(E+P'Cosa-B2)   '     Dt> R 
21 

r                                                                                                  ?    (E+C-Bo)l 
•   p-cosa-(E+2C-B2)   + 4  .   (C-tana-p-sina)   ^9 

+ K •    —-"2—    •   sina    + |jD+(E-B2)cosa-C-tana-sinaJ 

[c*tana-p•sina) (4C)/R' 
21. 

dp   "     X     '   FM(B2) 

3.2.A.4  Cont. 
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2- B •[K-M-4'Ucos2a] 

B-H 
U1(P) 
Ip^B)2 

dp 

+ u      • (A5UMHP + A5UMHN) + u  . • (A5UBP + A5UBN) 
l(B-H) •LtB' 

(A5UPHP + A5UPHP) + u KB) 

+ 2 • B •[K-M*4*PCOS2OJ 
%»  * 

B+H 

+ J   U2(3ä) 
\ 

A   (xl-E-B-cosa)  R .  . 
M.4.jj4--i_ -j  . B  sina 

12 

+ M-4-u(XU-E-B-cosa)
2 (4. s.na. £(E_5ä+C)B] ) C.tana-B*sina 

12 

•Cosa   (C-tana-B-sina) 

12 
rK _ M-4vxi-E;fosaA[ 2^ 

12 1 

(E-X1+OB) I  dXl 

j fl-E'cosQ-C'tana• sinO-B»cos (0+a)1 r.      „ M   -\ 
3(0) )\   ? J- I*   • M-4-p] 

{ 13 

E(cos0-E-B* cosa) B-sina   (cosO-E-B»cosal^B- sin (6+a)+B(E+C) sina)"! 
R2 R* 
13 13 

["„  M-4'ij(cos0-E-B-cosa)2l f -2-B-sin(0+a) 

13 J "     13 

4 • sina 

r  2TT 

• J  u 
0 

- (1-E- COS0-C- tana- sin0-B- cos (0+a))- 4 
(B- (E+C)sina-B-sin(0+a)? 

13 
\ 

de 

3.2.A.5 
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•/' 

u    _       b|.4JW-5a'OM»*   •   B  •   six*. 
4(XI)      < I 

1 
12 

C-tan^-B'sinft 
R2 

12 

+ M-4-p(Xl  -E-B-coaq)2(4.sino.|-(E.xl+c)Bj)ir 

12 

r (5Cl-E-B-cosa)2l   r2-B-cosg       (C-tan«-B-sin«) 
+    K-M-4-y g         H       R2 " *• 

L 12        1     J    L 12 12 

•   4  •   sina(E-Xl+C)B) ) dXl 

B"H-2-BrK-M-4-u-cos2g;    t d 

(p-B)2 5(p) 

+U5(B-H)   *    (A5UMHP-A51JMHN)   + U,.(B) 

(A5UPHP-A5UPHN) 

(A5UBP-A5UBN) 

+ u 
5(B+H) 

2-B-rK-M-4-uCOs2g] . u      d 
(p-B)2 5(D) 

B+H 

• B-H 
M* 4 • u • Bjsin2a 

0 

+ v 
1(B-H) 

Vl(p)'   (p-B)2 "  «P 

(A5VMHP + A5VMHN) + *1(B)   '    (A5VBP + A5VBN) 

+ v       • (A5VPHP + A5VPHN) 
1(B+H) 

3.2.A.5 Cont. 
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f - 
J 1(P> (pHB)2 *P 

B+H 

f 

2 (XI)    j * * * * -B-sinc a(-C'taiia+B-sin«)' 
"» 

12 

-2-B.cosa(-C-tana+B'sina)(Xl-E-B*cosa)/S^ 
12 

-(XI -E-B-cosa) (-C'tana+B-sina)2-4-B(E-xT+C)-sina/F!B 

+ ["-B-sing _   (Xl-E-B-coS(i)-2-B- (E-Xl+Q-siiy," 

+ J    v3(e) 

R4» 
12 

B* sino(singrC- tana+B* sina) 

Ü 
dXl 

• (l-E-cos0-C'tana* sin0-B-cos (Q+aJ/R4* 
13 

+B'cosa> (cos0-E-B-cosa) • (l-E'cosQ-OtanocsinQ-B'cosfgrfa) )/R** 
13 

+ (COS0-E-B-cosa) (sine-C- tana+B- sina)B-sin {0+a)/
Rlt 

13 
+   [(cos0-E-B-cosa)(sinO-C-tana+B-sina)U-E*cos0-C*tanasin0-B-cos(0+o)) 

•4-(-B-sin(0+a)+B(E+C)-sin0)]/R6 

_2.K. j^cos(e+a)   +   (E.sin0_c.tano-cos0+B*sin(0+a)) 

13 
•2-(-B-sin(0+a)+B«(E+C)-sin aJ/R11 

13J 
d0 

3.2.A.5  Cont. 
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(} j 
sina('C,tana:B-sinCt)2 

12 

-2-B-cosa(-c-tana+B-sina) (Xl-E-B-cosa) /R1* 
12 

(Xl-E-B-cosa)(-C-tana+B-sina)2-4-B(E-Xl+C)-sina/R6 
12J 

p-B-sina    (Xl-E-B-cosa)-2-B-(E-XI+C)-sinal I _    -B-sina     (Xl-E-B-cosa)-2-B-(E-XI+C) 
=***|| dxl 

f  B-H 

+ I   v 
5(p) 

(-M.4-uB-sin2a) 
—572  dP (P-B); 

+ V5(B-H) * (A5VMHP ~ A5VMHN) + Vg  . • (A5VBP - A5VBN) 

+ V5(B+H) ' (A5VPHP - A5VPHN) 

B+H 

(-M-4-w-B-sin2a) 
5(P) T^P-  dp I * FA5(B) 

3.2.A.5 Cont. 
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-1 "\w & d° + Hwo • ,wuw" * U
K» ' lB1UB> 

+  u ,    •    (B1UPH) U1(B+H) 

C    Ul(   )   ^    dp +    /     "»»>   |M-4^-E-B-COsJ 

B+H 

[».gWC'tttol2    K .[xl-E-B-cosg] I   ££ 

12 12 

+  I    u l-MM-urcoso-E-B-cos^.^ino-C-tana+B-sinc] 
J        3(0)   I 

• [1-E- cosQ-C- tanof sin0-B- cos (0+a)J/R^ ^ 

-K-[E-sin0-C-tana-cos0+B'Sin(0+a)]/R^3j
ae 

+ [
1
U    —   |-M-4-p[xr-E-B-cos0].[B-sina-C-tan0J2/Rj2 

F 

+ K • [xl-E-B-cosaJ/R2  \ dxl 

/•B-H 

•I       »5{p)   Sfr       dp     _U5(B-H) 
(B1UMH)   -  U5(B)    •    (B1UB) 

-5(B+H)   '    (B1UPH)   +  J U5(P>      lP"B 
B+H 

{-*r> dp 

.,.   „-:    •  .— _.. 



KB) 
2 (XI) [* M- 4 • ji \3' sina-C- tana]: 

12 

• T-B- sina+c- tana] /R2 dXl 
12 

,2TI ( 
H. .. ,.     fsine-C- tana+B- sing] 2 1 + j       V3(0)      [K-M'4-y1 y  

0 13 

Tl-E-cosO-C-tana-sin0-B'cos<0+a)]/R2 id© 
'" -1     13| 

I 4 (XI)        |_ M 
B-sina-C-tanalz 

 ^  
12 

B-sina-C-tanal 
D2 

12 

5(B) r   • FBI, , X (B) 

3.2.B.1  Cont. 
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f u ^-M^-uLE-fp-cosa-BjJ^C-tana-p'sina] 

r(E+p'cosa-B, ) (-sina) + (C't8uia-p-sina) (-coso)l   /& 
*- * 21 

K • |[E+p • cosa-B2) (cosa)+   (C-taiia-p -siiia) (-sinaJj/R2    dp 

j      u2(xT: 

B2-H2 

+ I        u   ,—.   f-~K    }  dxl      + u 
2(XI)   lXl-B2   ' 2(B-H)   *    (B2UMH)   +U2(B)   '    (B2UB) 

+U2(B+H)   *    (B2UPH)   + {-57TS7 > «"I (XI)   l   X1-B2 

B2+H2 

+   I    U3(o) 1 ~M*4"W(cosQ~B2)(sine)(1-B2cos0)/R^ 

-K[B2-sin0]   /R2   >d0 

,B2-H2 

+ J      U4(XT)   <lfc2>   dXl       - U4(B-H)   '    (B2UMH)   " U—   *    (B2UB) 
4(B) 

U4(B+H)   *    (B2UPH>     + 

/' • 
4 (XI)      {_XT^2}        dXl 

B2+H2 

+    I        u !  -M-4-y[E+p-cosa-B2]-[c-tana-p-sina] 

+   [(E+p*cosa-B2) (+sina)   +   (C- tana-p' sina) (+cos<»)]   /R1* 

+  K   [(E+p'COsa-B2)coso +(C'tana-p*sina) (-sina)yR2       dp 

1 

3.2.B.2 
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f   v1(p)  )[„.,,  (C-t^g-si-a,^ 
0 I 21 

[(E+p'cosa-B2)(-sina)   +   (C«tano-p*sino)(-cosa)]/R2  lap 
21 

— »V 
X.      2(B2) •I 

2TT 
L    M'4'y   (sin20)l r 1-B?cos0 1 I     „ 

•3(9) |LK—V—Jl-%—jl de 
23 23 

1 
X ' V4(B2) 

/ 21 

[jE+p • cosa-B2) sina + (c* tana-p • sina) cosaj /R2 

21 
dp 

•    T *   FB2,„  , 1 (B2) 

3.2.B.2  Cont. 
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(- 
u i-M-4-urE+p'COSor cos0ol-[C'tana-p'sino-8ineo] 

J ul(p)   | HL 
(P)   | 

. P-E»sinorC'Sinod-sin(en+ot)l/Rj* u 31 

-K«   [E.cosorC«tana«sino+-p-cos(e0+o)]/R2 ?äp 

4     u0<-     JM.4.y[xr-cosGoKsin2eo]/^-Klxl-coseo]/Ri|   I *» 
2 (XI) 

F 

r2n 

J 

«3(e,   ***£*   '    »in<^Ö»    de 

J 
e0-»3 

'3(0) 2 
K 
•> 
K COS(^) 

I' sin(^) 

de " K*|u3(eo+H3) "U3<e0-H3)j 

f 2ir 

e0+H3 

l 

If cos(^) 
"3(0)      S2   "   ««„ffi^l 

de 

+        U4(X1)       -M-4.u(xr-coS0oXsin20ol/R^+K.[xr-coseo]/R
2
2<iXl 

F 

C / 
+ f       u !-M'4.y[E+P'COSo-cose,J-[c.tano-p.sina-sine0] 

L  5"" I 
. rE.sina+C'sina-sin(a+0o>]/R'* 

l- 31 

- K»   fE.co8a+C'8ina'tana-p+cos(0o+a)]/R2  Up 
3.2.B.3 
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•i\ (P) 
K M-4-u(c'tana"p,sina-sinOo): 

31 

L-E * sina-c• sina+sin (0o+a)]/R2 \ dp 
31 

J { 32 J      U 32J 
dXl 

J III      M'4'H 2,0+Qm ! .,„ I      1 j       V3(0),'[2--T-    •  cos2(-^)>del -v3(( 

0 

1 

v 'i 4(XI)   1 

!   J 

[,ryyi«V|.jayj| „xr 
32 

• I      v5(p)      [K-M-4-M(C,tana-^Sina-Sin0")2 j 

o P   I 31 

[E'sina+C'sina-sinfa+onjl/R2 I dp 
31 

"I*  FB3(Qo, 

3.2.B.3 Cont. 
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• '•'••• 

I U1(P) [M,4*y2 •C(E+p«0030-82) 
sina 

21 

(p»cosa-(E+2*C-B2)   + 4* (C'tana-p'sina)   •   R^      J 
21 

-K    —j-z"    *sina+   Q)+(E-B2) •coso-C*tana*sina] 

[c'tana-p'sinoi] (4C)/R' 
21 

dp 

+U2(B-H)*   (B4UMH)   +U2(B)*   (B4UB)   +U2(B+H)-    (B4UPH) 

I       U3(6)     |M,4-U-(2C)-(c0sy?)   •   fl-B2cose+sin2e) 

0 

-4- (1-B2-OOS0)^ 1   -K.££ • [ 2-B,-sin^_cos0| J dQ 

23 23 23 J 

+ u4(B_H)-(B4UMH)   + u4(B).    (B4UB)   + U4(B+H)*    (B4UPH) 

•/ 

;   M»4'p2*C(E+p*cosa-B2)  —rip- 

I L R
21 I1 

r                                                                                         2   (E+C-BO)T1 
[p«cosoi-(E+2'C-B2)+4' (C-tana-p'sina)   •  2  *  j 

21 

-K  j-^jjf    -sina +   [p+(E-B2) «cosa-C-tana-sina] 

[C'tana-p'sina]   (4«C)/R| 
21 

,dp 

3.2.B.4 
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+ J      V1(P)1L&*4*U,(B2-E-C),sin°- (C-tancx-p-sina) (4C)J • ^ 
0       \ R 

.n _ (C'tana-p'sina)2 i 
R2      J 
21 

+  [k - M-1-ii(C'tana~°'sinot>2 I 

21 

' |fr+ (B2-E-C).sina-(c-tana-p.sina)-^g-]]} dp 
21  J 

;'B2-H2 
+ /    v   . (+K'2»C)  .  
J 2(XI)   (Xl-B2)

2 dX1 +V2(B-H)' (B4vMH> + 

21 

F 
v2(B)-(B4VB) 

+v 2(B+H) -<MVPH)  + 
2 (XI)   (Xl-B2)* 

dX1 

B2+H2 

+ 1  v     JHM.  4'C'sinO f  sin20 1 |".       1 
J   3(9)  M 4 w   ?l *[1- -g— J-ll-B2.cos0 
0         V         23 23            J 

'2,C;rn0     . [K-M>4.p.sin2e-j£ .1+21azgpos0i| 1 

B2-H2 

+ I       v   — - (1K-2'C)      „7T 
J             4 (XI)    <xi-B2)z       dX1 -  V4(B-H)* 

23 

(B4VMH) 

-  v4(B)   .(B4VB)   -  V4(B+H).    (B4VPH) 

3.2.B.4  Cont. 
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— '•• •  ' •'• 

f (-Kj2'C) 
+J V4(X1)'    (Xl-B2) 2   * dXl 

B2+H2 

c 

"I       v«;r        *)   [M*4'U<B2"E"c)*sinot*(c* 

r,        (C'tctna-P'sin«) -\~\ 
• B gz* JJ 

21 
["<-   ,    .     (C'tcuict-p«sina)2i 

+   [K-M-4-U j^T 1 
L 21 

•       •=§•+   (B2-E-C)*sina'(C'tana-p-sina)—gip-    ; 
L   «1 21 " 

tana-p*sina)(4C)J   •—v 
21 

21 

= •=-    •   FB4 ._  . 
X (B2) 

dp 

3.2.B.4 Cont. 
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B-H 

KP) M,4*M«,sin2a 
(P-B)2 

dp 

+ ui /n ul' (B5UMHP + B5UMHN) + u, . . • (B5UBP + B5UBN) 
X \B~H' 1(B) 

+ U1(B+H) * (B5UPHP + B5UPHN) 

(c- 
• \         u- . .  M'4'wB'sin2a 
1 1(P)     <p-B)g  dP 

B+H 

rl f 
I i , u .  [„  .  (-C'tana+B* + l  u2<xT) 12.M.4^^B-sxna ^~ 

J { 12 

sing)2 

-2'B*cosa(-Ctana+B«sina) (Xl-E-B'cosa) /R1* 
12 

(Xl-E-B-cosa)(-C«tana+B«sina)24'B(E-Xl+C)«sina/R6 6 ] 12 J 

-2-K [Ä -B'sina _ (Xl-E-B'cosa) 2'B(E-X1+C)sina 

12 12 3 > dXl 
2TT 

u    ^ 2 
3(0) S •M*4*u* 1 B'sina(sinO-C*tana+B« sina) 

• (l-E*cosQ-C«tana«sinO-B,cx)s(0+a)/R'* 
13 

+ B*cosa(cos0-E-B'cosa) (l-E«cos0-C*tana'sin0-B*cos(0+a) )/R** 
13 

+ (cos0-E-B«coso) (sin0-O tana+B« sina)B« sin (0+a) /R1* 
13 

+ [jcosO-E-B*cosa)(sin0-O tana+B* sina)(1-E'cos0-Otana*sinO-B«cos(0+a)) 

3.2.B.5 

135 

- —-  , •.^,..^,A—»_...  «.-^:..  •• ^.•-••.^•••.^..^^i  •  ••.,.-.!   -<*iil"*i 



4(-B*sin(ö+a)+B(E+C)sina) 
^,\ 

+2.K 
B*C°^g a) + (E«sin0-C«tano«cosO-B«sin(O+a)) 

L     13 

•2*(-B*sin(0+a) + B« (E+C) sina)/R** ld9 

-/   us» H**"?*1 

-2«B«cosa(-C,tana+B«sina) (Xl-E-B'coscO/R1* 
12 

-(xT-E-B-cosa)(-C'tana+B«sina)2-4«B(E-xT+C)«sina/R6 

f-B'sinc 

12 

-B'sina   (Xl-E-B»cosg) 
•2'K  | r^ 

•2-B (E-Xl+C)sing] * J 12 
> dxl 

•/B"5,p, "M;::£;"'ln2a' <> •«,»••«—-—> 

+ uc , , • (B5UBP - B5UBN) + uc ._„. • (B5UPHP - B5UPHN) 
5(B) 5(B+H) 

C 
f (-M'4»u-B»sin2g)  . 

U5(p)  (FiP  dp 

B+H 

,-B-H 
Vl(p)  J2-B-[K-M.4-M.sin2aj -^yy j  dp 

• V, ,  ... • (B5VMHP + B5VMHN) + v, ,m, • (B5VBP + B5VBN) l(B-H) 1(B) 

• V,,  ...• (B5VPHP + B5VPHN) 1(B+H) 

3.2.B.5 Cont. 
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j Vl(p)     2*B* [K-M'4.p.sin2a]  ^p I dp 
B+H 

1 

+ v    —      < J 2 (XI) •M*4*y*(B •sina-C*tana)*2*B*cosa 

+ (B*sina-C* tana) 
2   *2*B*sina(E+C-Xl)       C»tana-B*sina 

12 

XC*tana-B*sina 1 

—*:—J 
K -  M*4*p  — 

sina-C*tana)2] 

12 

f 2'B-( 

L       R 
cosa 2 • (B •sina-C tana)•2•B•sina(E+C-Xl) 

+  rn  T 
12 12 

> dXl 

-2n 

•    I     v 3(0) I 2*M*4*p (sin0-C*tana+B*sina)*2*B*cosa 

r •   n r. i        ^„           12   •>  „   f(E+C)sina-sin(a+0)~]l •l_sin0-C*tana+B«sinaJz'2'B« *• •—-7 — u 

13 

•   1-E*cos0-C*tana*sin0-B*cos(0+a)  /R1* f- 1/R- 
J     11 

[..  J        (sin0-C*tana+B*sina)2 1 
K - M*4*p  ^2  

r 13 

•  "2*B*Sp2(0+a)   - 2*U"E*cos0-C*tana*sin0-B*cos(0+a)) 
13 

•2*B* ((E+C)*sina-sin(a+0) )/R**        ^   d0 

4 (XI) 
i •2»M»4*|l*     (B*sina-C*tana) *2*B*cosa 

.2   •2*B*sina(E+C-Xl)] P C*tana-B*sina 1 
• (B'sina-Ctana)*     -3 -[•[   rr;  

3.2.B.5 Cont. 
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tv w A       (B'sina-Ctana)2 1 K-M«4«p ^2 J 
12 

cosa       2»(B« sina-C»tana)•2» B»sina(E+C-Xl) 
R2 +  J*  

12 12 '] dXl r 2-B« 
L   * 

( B-H ( i    ) J v5(p)       ^.BLK-MM-u-sinZaJ.-^-^      dp 

+ v_,   , •(B5VMHP - B5VMHN) + v_. .• (B5VBP - B5VBN) 
S(B-H) 5(B) 

+ vc,„   • (B5VPHP - B5VPHN) 
5(B+H) 

C 

•I 5(p) 
•2«B« [k-M'4«ysin2aJ- j——^ 

B+H 

"f '   FB5(B, 

dp 

3.2.B.5 Cont. 
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B. 2  Insert Formulas for Eq. set (3.2) 

Insert Formula for Linear Displacement Assumption 

(u • c1 p + c2) 

Linear Insert Eg. Al 

A1VMH  E -K 

A1VB   E  0 

A1VPH  E +K 

Linear Insert Eq. A2 

A2VMH  E -K 

A2VB   E  0 

A2VPH  E  K 

Linear Insert Eq. A4 

A4UMH  E  0 

A4UB   = -4-C«(K - M^4'vi)/H2 

A4UPH =     0 

A4VMH  E  iT«C« (M.2«y-K)/H2 

A4VB   =  0 

A4VPH  E -ifC (M«2«y-K)/H2 

Linear Insert Eq. A5 

A5UMHP E M«2«ysin (2 a) «B-Tr/H 

A5UBN  E  16«M'y.|^«cos a  - 4«K«| 

A5UPHP E  -M'2«ysin (2a ) «B«^ 

A5UMHN =     A5UBP = A5UPHN = 0 

A5VMHP =     (M'2«IJ«COS 2 a -K) «^ 

A5VBN  E  -M«8'U«|«sin 2 a 
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A5VPHP 

A5VMHN 

Linear Insert Eg. 

-(M.2.y.cos2a - K) •— 
n. 

A5VBP = A5VPHN = 0 

Bl 

B1UMH — K 

B1UB = 0 

B1UPH = -K 

Linear Insert Eq. B2 

B2UMH = K 

B2UB = 0 

B2uPH = K 

Linear Insert Eq. B4 

B4UMH = 

B4UB = 

B4UPH = 

B4VMH = 

B4VB = 

B4VPH E 

Linear Insert Eg. 

TT'C« (M«2«y + K)/H. 

0 

-JI'C«(M«2y + K)/H, 

0 

-4«C'K/H2 

0 

B5 

B5UMHP 

B5UBN 

B5UPHP 

B5UMHN 

B5VMHP 

B5VBN 

B5VPHP 

(M'2'p'cos 2a + K)• 

-M*8«y—*sin 2a 
n 

-(M«2«M»cos 2a +K)• 

B5UBP = B5UPHN = 0 

B7T 

H 

BIT 

H 

-B'M'2'yrr  «sin  2a a 
B 2 

4«   —«(M'4'p'sin a  -K) 

B«M'2«y   jr-sin  2a 

VMUl 
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B5VMHN B5VBP = B5VPHN = 0 

Insert Formula for Square Root Displacement Assumption 

Define: 

Dl 

AG 

(u = cx  1/2 • c2) 

\fB + H1  - 2«>JB +'JW=fT 

(V/B+H~ + N/B)   »   (v/FTT- \fe) 
s/ö+H - N/B        («JB-TT"^ MB) 

Square Root Insert Eg. Al 

K[2N/B  -   2N/]FB  -   .SN'B'LntAG)] Dx 

K [2-v/B^H  -   2\f+H  + \/B»Ln(AG)J gi 

A1VMH 

A1VB = 

A1VPH E K [-2\/B  +   2\fe+H   -   . 5*jB«Ln (AG)j  1 

Square Root Insert Eg. Bl 

B1UMH    =   -A1VMH 

B1UB     -    -A1VB 

B1UPH        -A1VPH 

Square Root Insert Eg. A5 

A5UMHN   = 

A5UBN 

A5UPHN 

A5UMHP 

A5UBP 

A5UPHP 

A5VMHN 

A5VBN 

(M«4«p«cos2a-K)    (^    Ln(AG)   + ^|) 

(M.4.y.oos2a-K)    (-  ^ Ln(AG)) 
Ul 

A5UMHN 

-M«2y H«D. 
«S/BTT 

• sin  2a (H +  2B -  2«JBN/B+H) 

'""•'"'H^.sin  2a(-H +  ^/B^/B+a  -   S/BN/B^R) 

-M«2'Vi'     sin  2a(H-2B +  IsjBsIB^) 

•s/B 

H#D1 B */B 
-M«4«ysini2a(| + ^«LnCAG)) 

M«4«ysin  2a   (j£  'Ln(AG)) 
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II 

A5VPHN 

A5VMHP 

A5VBP 

A5VMHN 

jj-75-   <K " M«2«ycos  2a)    (2 •B/B+H/B^2BV^+H 

TT    (K - M«2«ycos   2a)    (2*  B/B+H 

-   2/B»H  -   2«B/B
::

H) 
H«D 

A5VPHP = IT    (K 
H.Dl 

- M»2«ycos 2 

-2'BjB+ H/B) 

Square Root Insert Eq. B5 

B5UMHN = A5UMHN 

B5UBN - A5UBN 

B5UPHN - A5UPHN 

B5UMHP = 
-7r     (V 

B5UBP 

B5UPHP 

B5VMHN 

B5VBN 

B5VPHN 

B5VMHP 

B5VBP 

B5VPHP 

H'D, 

-TT 

H*Dn 

(2'BjB  -   2-B/B+H  +  HjB) 

(K + M«2«ycos  2a) 

(2«B/B+H   -   2/5'H   -   2^B/B-H) 

-  TT        (K + M«2«ycos  2a) 
H«D, 

(2«B/B-H   -   2«B/5  +  H/B) 

J   2 (M»4«ysin  a-K) (/B_«Ln(AG)   +2B) 
2D, H 

.   2 (M«4«ysin  a-K) (-JT|«Ln(AG) 
Dl B5VMHN 

"'^'„^"sin  2a(H +  2.B-   2 JB/BTH) 

M«4y   -i^^-sin  2a(-H +   JBJB+H =/S/B
::

H) 
H. Dx 

M«2«y« /B'Tf   sin  2a(H  -  2«B+  ißfiü^Yl) 
H'D, 
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Insert Formula for General Non-Linear Displacement 

Assumption 

(u = Pi  •*• C-) 

Solution of the following transcendental equation 

~D11*K*4"B'H " D2i*K'2'H 

sin y[ir  + -o]) +Y*sin [TT + a] =0 

Define: 

D2  [C - B + H]Y- [C - B - H]Y 

D-j  Y(Y -1) {£  -B)Y"2 
2*D2 

D-,  -Y(C -B)^1 -B«Y(Y -1) (C-B) y~2 

D2 

Y~ Insert Eg. Al 

A1VMH = 

A1VB = 0 

A1VPH = -A1VMH 

Y- Insert Eg. Bl 

B1VMH s -A1VMH 

B1VB a 0 

B1VPH E -A1VPH 

Y- Insert Eg. A5 
2 

A5UMHP = "Dn I B'M«4«y [4»cos a»H-2*B«TT«sin2a] 

-K«B«4«H) 

A5UBP 

+ D?, •M
,4,yiT'B'sin 2a 

B    2      B 
-M»4»y'jT*COS  a+ K'rr^ 
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1 
A5UPHP 

A5UMHN 

A5VMHP 

A5VBP   S 

A5VPHP s 

A5VMHN S 

Insert Eg. B5 

-A5UMHP 

A5UBN = A5UPHN = 0 

D21*(M*4*U'B*^'cos 20t-2*K'Tr«B) 

+D  *(M,8,U,B(H'sin 2a+ B'^'cos 2a) 

-2*TT*B
2
*K) 

M*8'U*| sin 2°i 

-A5VMHP 

A5VBN = A5VPHN = 0 

B5UMHP = 

B5UBP S 

B5UPHP = 

B5UMHN = 

B5VMHP = 

B5VBP  5 

B5VPHP 3 

B5VMHN S 

Define: 

D, 

D21* (M*4*y *B*TT*COS 2a+ 2*K*ff*B) 

+ Di:L'(M'8*U*B(H*sin 2a+ B'^'cos 2aj 

+  2*TT'B2,K) 

M'S'U-jT'sin 2a 

-B5UMHP 

B5ÜBN = B5UPHN = 0 

-D  •(B,M*4,M (4*sin a'H + 2*B,Tr«sin2a 

-K*B'4'H ) 

-D-n'MM'U'ff'B'sin 2a 

-M*16*V,Br*sin a+ 4*B'§ 
H H 

-B5VMHP 

B5VBN   •   B5VPHN  •   0 

[B2   •   H2   -F]      -    [B2   -   H2 

Y-2 

•F] 

11 

'21 

-Y(Y-l)(B2   -   F) 

2D^ 

-Y(B2   -   F)Y-1   +   B2-r(   -1)(B2-F)Y"2 

_ 
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Y-Insert Eg. A2 

A2BMH = 

A2VB =   0 

A2VPH S   -A2VMH 

Y-Insert Eg. B2 

B2UMH =   -A2VMH 

B2UB =    0 

B2UPH =   -B2UMH 

y-Insert Eg. A4 

A4UMH = 

A4UB = 

A4UPH = 

A4VMH = 

A4VB = 

A4VPH = 

Y-Insert Eg. B4 

B4UMH = 

B4UB 5 

B4UPH S 

B4VMH S 

B4VB = 

B4VPH =   -B4VMH 

Cn.K.4-B5 H2+ C21.K.2.H2 

+C11*4*C(K " 4*M'Vi)H2 

-4«C(K - M«4«y)/H0 

-A4UMH 

(C11«2.B2 + C21)2«TT»C(K - 2«M«y) 

0 

-A4VMH 

-(Ci;L'2'B2 + C21)2'ir«C(K + 2-yM) 

0 

-B4UHM 

C11*K*4*C'H2 

-K«4«C/H0 
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«^^^•MM 

( c B-H 

(txl(p)  -txKE)»*l^^8>^ + txl(B)*i Ln(p-B)2dp 

+ *»ifM   [2-H-LnH-2.HJ     + tÄirB;i. | Ln(p-B)2 dp xl(B) xl(B)   2 

B+H 

+J    CScMp)   ,M,cos2(a'   " tyl(p).M.sina-cosa] dp 

+ J      {tx2(n)-  I * to(RJ2>  + «^(H)'  M* (Xl-E-B.cosa)2/R22 

F 

+ t     (— •  M. (Xl-E-B-cosa) (B-sina-Ctan0)/R2    } dXl 

+ \      ^x3  ' J*1-11*1*2    + fc
X3(0)*  M* (cos0-E-B.coso)2/R2 

+ t    -M«(cos0-E-B«cosa)(sin0-C«tana+B.sina)/R2  } d0 
y 13 

•/ 
+ l     {tx4 (»> ' 2 ' *" R2

2 
+ Sc4 (3a) *  M* ^1-E-B.cosa) V^ 

+ fc«4(5iJ   •M*<xl-E-B'COsa) (B.sina-Ctana)/R2 } dXl 

*• C B-H 
+ ;        *tta«f«l-t,«l«i>,i*|Cp-«^p  + t.,|M.|.  J Ln(p-B)2 dp 'J        *"x5<p)   "x5(B)'   2 

0 
x5(B)   2 

+ 'if«   Ü2-H.LnH-2.H]   + tx5(B)-  |   .     fS       Ln(p-B)2 dp "x5 (B) 

fS- 

J B+H 
FA1(B) 

+j 1^x5(p,   -M-cos2a - ty5(p)   .M .sin«,   cos«]     dp 
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FT-»-—I» <•'   •— p—m 

/ 
{t . .     .   ± •  Ln R2    + t xl(p)     2 2 

+  t .   M.  (E+p»COSo_B,)   /R2 
1 XJ-lp> * 21 

+ t .  M .(E+p.cos0-B2)(C.tana-p.sina)/R2   } dp 

f1 , -        , 
+ J       { (tx2 (XI)   -\2 (B2)

} '   2 * ta (X1-B2)     + Sc2 (3ET)*  M  > dXl 

F 

B2-H 

+  t 1   2       
x2(B9) --Ln(Xl-B-)     dXl +  t  _,„   ..   2   (H.Ln H-H) 

*    J 2 2 x2(B2) 
F 

+  t 
x2(B2) 1 — 2     — 

j-Ln(Xl-B2)     dXl 

B2+H 

2     2 
{tx3(0)*  I'1"1 *,  + We)*   M-(COS0"B2>   /R23 23 

+ t    •  M.(cos0-B2)(sin0)/R2   } de 
yj 2 3 

+  J       { (tx4 (XT)   -fcx4 (B2>> '   2 • ta (H""B2> 2  + fcx4 (XI) '   M>     « 

F 

+  t 

B2-H 

|.Ln(Xl-B2)
Z  dXl     + tx4 .   2.(H.LnH-H) 

F 

(  X - + tx4(B,) I.Ln(Xl- B2)
2 dxi 

B2+H 

+ I        {tv;   "   »  ,Ln R2
     

+ t  <;,M   (E+p«cosa-B2)
2/R2 

x5       2 21 x5 21     FA2(B2) 

+ t    •   M «(E+p-cosa-Bj)(C«tana-p«sina)/R2 } dp 
V5 21 
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r {txl(p) 
- . Ln R2    + t 
2 31 

xl(      • M. (E+p.CO3o-COS0o)2/R2 

+ t ,|     •  M« (E+p«cosa-cos0o) (Ctema-p'Sina-sinQgJ/RZ } dp 
* 31 

+ 1 {t 
p 

• \ • Ln R2    + t _ .— • M' (Xl-cos0o) 2/R2 

x2(Xl)     2 32        x2(Xl) 32 

+ t _ • (Xl-cos0o)(-sin0o)/R2  > dXl 
y2 32 

+   I        (t ..... M.sin2i^0-    - t 

0 

{tx3(0)* M'sinZ ^T-  ~ Sate) • 2 * "*»««on   d© 

+ J      rx3(e) : ^(ep)   . te(a-a.oo«<e-eo»| d©     + 

2* 

j'J'j    Ln(2-2.cos(e-eo))d0 

0O-A0 

Ln(2-2*cos(0-0o)d0 + t 
"x3(0o)     2        ; —- " UB'"U        x3(0 

0 
0O+A0 

S»f*)  •   f •  [«•'»<«»-2.I».4-4 - ^ ] 

•J<W>- J-«-«J,*^(n,-iS:S,S-i 
/ 32 

+ t */5Ti    ' M ' (Xl-cos0o) (-sin0o)/R
2 } dXl 

y4 (XJ.) " 32 

^(p)" 2 * Ln R3!  + '«5CP)'   M ' UW—*"ty/*n 
J 0 

+ t  _.     •  M*(E+p*cosa-cos0o)(C*t«mo-p'sina-sin0o)/R2 ) dp 
y5(P) 31 

FA3 (V 
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/ 
t (-2 C)(C*tana-p«sina)/R2 

xupj 21 

+t xl(p) M • (E+p«cosa-B2)2   (+4C) (Otana-p*sina)/R'4 

21 

• t • M.r(E+p.cosa-B2,]f^-   •   (C-tana-p.sina)2(+4C) 
21 21 J 

dp 

B9-H 

Vutt) [T&J]   
dxl 

Bc>+H 
y2(Xl)        Xl-B2 

"M-2'c      dxl 

+  tx2(B2)      [2'C<M-1W] 

2w, 

x3(0) 
f -2«C'sin0 1 „     (cosO-B?)   (4-C-sine) 
L-"? J + ^(G)'" ^  

23 J 23 

+  ty3   -M.(cos0-B2)    I   —p- + 
ft 

sin20   (4C) 

23 23 J > d0 

x4(B2) 

B2-H 

[2«C   (M-1)«TT] 

f 2 r 
j y4(Xl)        [ Xl-B 

C 
B2 

dXl    + 

,1 

J fcy4 <xT)   L    Xl-B2J dXl 

B2+H 

i r-5<p) •2•C•(C*tana-p•sino)  p  
21 
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• ^(p)   'M-tE+p-coso-Ba)2   (4C)   (Ctano-p'sinoJ/R1* 

+ t-             .M ./I.J.„.„„«,„ s  \   F -2C          4» C • (C» tana-p * sing)211   . ^(p) -(E+P'cosa-Ba)       -gr   +     R"     v —   fdp 
21 21 JJ 

FA4(B2)Cont. 
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• wm «a 

ScKB)   '2'B "* t . .     •  M • sin2a    dp xl(p) 

B-H,C 

t ,.    • N .sin2a-&22- xl(p) p-B dp t . •   M • 2 • B •if sin2a 

0,B+H 

r0 rB-H,C 

+ f t , .     • M • cos2a    dp     -     I t  , ,     •   M • 
yKp) M I yl(p) 

-    C\ * f\     DJ.U 

cos2a.iß±§I   dp 
P-B 

O.B+H 

" t      B     «M • 2 • B •   IT« sin2a 

• 
+ t x2(Xl) 

J   •>.» ~i„   (C+:.:-Xl) M- (Xl-E-B'Cosa)2(Xl-E-C)4'B-sina 

-4»M'(+B«sina)(Xl-E-B-cosa)/R2   IdXl 
12 

+j        SaÖäj   |-M-2.B.sina -^ 
sina-C-tang)._ „(Xl-E-B'cosa)   , _ . 

Since  rjF h2«M ^   (-B«cosct) 
12 

IF 
12 

1   _ +M.(Xl-E-B-cosa)(B-sina-C-tana)   4'°'s"g (Xl-E-C)   • 

12 J 

• 

2TT 

J  2       (rE+clsina-sin(a+0)) 
x3 (9) 

13 

-4«B« M«sina(cos0-E-B* cosa)/R2 

13 

+ M-(cos0-E-B'COSa)2.4-B* (sin(a+0)-(E+C)sing)/R4   L d0 

2, j 
+   /      t  •> ,„\ S -2«M«B»sincf (sin0-C-tana+B-sing)/R2 

J y3(0) 13 

FA5(B) 
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- 2'M'(cos0-E-B'cosa)' B«cosa /R2 

13 j 
.     . (sin(a+6)- (E+C) sina) !     ... 

+4-B'M« (cos0-E-B'COsa) (sinG-C'tana+B-sina) -^    t   ao 
13 J 

J       t      -        ^.B-sina(C+E-Xl)   . M.(4.B.sina)(
xl-g;fcos^ 

/ x4(Xl)     • »* B 

12 12 

+ M  (xl-E-B'cosa)2'4'B«sina(Xl-E-C)/Rl* I dXl 

+ t   ..—,    J 2-M-(-B- 
I y4 (XI)     I 

, (B'sina-C'tana) 
sina) p  

12 

dXl 

+ 2«M-(Xl-E-B'cosa)(-B«coso)/R2 

12 — (Xl-E~C) 
+ M  (Xl-E-B'coso) (B'sina-Ctanot) (4«B'sina) ^  

12 
B-H,C ' 

+tx5(B)   *2 * B '   "' ] W   •M(-1)' Sln2° "^   df> 

^0,B+H 
P-B 

t „,      • M«sin2a    dp    + t -,_,   »M • 2«B«ir.sin2a 
X5(P) XDIBJ 

• B-H,C 

0,B+H 

y5(p)     rM*COS2a    Sf    dp+ty5(B)   rM'^B.sin2aj 

.f*. y5(p) 
M   (cos2a  ) f    dp 

FA5(B)   Cont. 
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•aaoB^HHBBBHaaBHB 

I B-H,C 

tyl(P),i'Ln(p-B)2dp    +tyKB)   '2'«-•-V 

0,B+H 

+ t 
yi(p) 

•M*sin2(a)       dp     + t w   ^   'M'C-r- sin2a)   dp xl(p) 2 

+   I      <t ^,—T' — LnR2    + t „,rr\   'M-(B-sina-Otana)2/R2 

I       |   y2(Xl)     2 12 y2(Xl) 12 

+ t „#:rr,   •M>(xT-E-B*cosa)(B*sina-C-tana)/R2   >   dXl 
x2(Xl) 12| 

+ It  „,-,   ••^••Ln  R2     + t  _,.   •M'tsinG-C'tana+B'sina)2/^2 

J y3(0)     2 i3 y3(0) i; 

+ t     ,^  •M-(cosO-E-B'COsa)(sine-C'tana+B*sina)/R2    1      d0 
x3(0) 13 I 

+   I      It  „,rr>   ••?•!• R2    + t      — 'M«(B'sina-C«tana)2/R2 

|      1   y4(Xl)     2 12 y4(Xl) 12 

+ t  .,—, 'M'tXl-E-B'cosa)lB«sina-C'tana)/R2   ^ dXl 
x4(Xl) 12 

,B-H,C 

yO,B+H 
y5(p)    i-^^-«2^      +ty5(B)'2'(H'LnH-H) 

+ t  ,.     -M-sin2«    dp+ t 'M-(- - sin2a)   dp y5(p) x5(p) 2 
^0 'O 

FB1(B) 
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J       I yi(P)    2 
-•Ln R2    + t , .     •M-(C'tancx-p«sina)2/R2 

yl(P)     2 21 Y1^) 21 

?  1 
• t ,,  ,   «M« (E+p*cosa-B2) (Otana-p'sincO/R^   \ dp 

"xl(p) 

B-H,l 

21 

1 .   .rr _ . 9 -rr 
Vd)   TLn(Xl-B2>2 dX1     +ty2(B2)-

2*(H'LnH-H) 

^F,B+H 

{ (V« * Ln Rz      + t 
;o   I 

3        y3(ö) 
•M'(sin20)/R2 

23 

+  t   „._.   «M'tcosO-Bo)(Sin0)/R2    I d0 
x3(0) * 2 3 

•B-H,l 

F,B+H 
y4(Xl) 
-       .|.Ln(Xl-B2)2  dXl     +ty4 ^-(H.LHH- H) 

+ 1      it c/  ,   ••^••Ln R2      + t c/  .   •M-(C*tana-p'sinot)2/R2 

I       \   y5(p)      2 21 Y5<P> 21 

+ t r,  .   'M-CE+p'cosa-Bo)(C'tana-p«sina)/R2   I dp 
x5(p) ' 211 

FB2(B2) 
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/       pUp)' I'
Ln #* tyl(p).M.(Ctana-p.sina-sin0o)2/R2

3i 

+ Sclfo)•M'(E+P,cosa_cos0o)(C'tana-p'Sina-sinQ0)/R2   \dp p 31! 

+ 1      it^,—,    • ^.Ln R2     + t„.>,—v.K.8in2e,/R2 

I 
y2(Xl)       2""" "32   '   ^(Xl) 

+ tx2(xT)   ,18t*t-siöeo) (Xl-cos0o)/R2   I dXl 
311 

J 

.2 
,0+Gr 

'. ( y3,8) 

M 
*j. {ty3(e)*M*cosat^>- W f ' sin<°+°o> i   de 

+Jo     |(tY3(e)-ty3(e0))      .Ln(2-2.cos(Q.eo))L0        + 

t ^0O-AO , 2-TT 

Y 2""       J Ln(2-2-cos(o-0o))   d0 +  fcy3(e0)     j       Ln(2-2cos(Q-O0))do 

0 0Q+A0 

• ^M.     (&Q)    [4.Ln(A0)-2.Ln 4-4  - iffili J 

1   f 

J       j  V   2  -Ln R2
32 

+ V(H)   -M-<sin20O)/^, 

+  tx4(—}   .M.(Xl-cos0o)(-Sin0o)/R2    i dXl 

+ J       |V(p)'   2>Ln R
31 

+ ty5{p)'
M*«C*t»«-p««iaa-»iii90)2/R2 

0        I 

•  t^5 -M-(E+p-cosa-cos0o)(C'tana-p«sina-sino0)/R2   I d( 

PB3(6   ) 
o 
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J t , .  .   • (-2C) (Ctana-p-sina) (1+2M)/R2 

*|   yl(P) 21 

+ t ..  ,   •M*(C'tana-p«sina)3(4«c)/R1* 
yl(p) 21 

„  [Di               _ 1 R-2C)        (C tana-p • sina)2 (4C) 1 I 
M« E+p»cosa-B2 ' —£2— +  J^-2 —  / «ip 

L L       21 21 J 

+  SeKp)    *M*lE+P*cosa-B2 

B2-H,   1 

\2Öä)   'M-(i^i2)
dX:L    +ty2(B2)

(-2-C(M+1)1T) 
F,B2+H 

2v< 

+i0 [v»« L 
-2-C*sin0 

R2 
23 

l~-sin0-4-C 
+ fcy3(e)   L        K2 

L           23 

sin30«4-C 
R- 

23 

_, (COS0-B,) 
C) T5-i_ (cos0-B9)sin20•4»C ll- 

•M 

23 

B2-H,l 

tx4(3ä)-M'(iPi2)    dX1    +ty4(B2)*   (2'C  (M+1)ir) 

F,B2+H 

r£ 

'y5(p) 
-2«C   (C*tana-p»sina)!   P.       _u      ou   (C tana-p «sina)2] , 
 R2 r  •   1  + 2M -  2M j^6       dp 

21 21 

tf
£   . x5 

„./r,.               „ . T "2»C     .  _ .   (C- tana-p; sina)2 "1   . 
•M-(E+p-cosa-B2)    -jjr    + C-4 ^       dp 

21 21 

FB4(B2) 
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t (-2«B«ir) U+M«cos2a) 

+ txl (-2-B.ir) (M.sin2a) 

f- (- 
+ 1 t )-M-(-sin2a)   dp    + t^ (   ).M-(cos2a)   dp 

^B-H,C f B-H,C 

7      V(P) 'Mfß)sin2a dp •;       fcxi(p) **{ß)cos2a dp 

0,B+H 0,B+H 

f1 
+
 fc 0,rTv'M-(B.sina-C-tana)(-4B)(cosa)/R2 

•i + l        *  ^,-nr, •M'(B.sina-C.tano)2(4B)sin0(Xl-E-C)/R'' 

'F 

+ 1 t -.jr» <-M.2«B-sina(B-sina-C-tana)/R2 

F 

_ „ „   (xT-E-B'cosg) -2«B«M«  -5 — cos« 
12 

+M(xT-E-B'Cosa) (B«sina-C«tan0) (4«B. siria(Xl-E-C) )/R**   I dXl 
12 

0 + 1       1*  ***.%     ^Bt-sinta+OJ + tE+O-sinaJ/R2 FB5(B) 
yj (0) 13 
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• ii -u—,.    ii -ii^ir-TBIM 

+ t  ,._.   «M-(cosG-E-B-cosa) (sinQ-Ctana+B-sina) 
x3(0) 

•4«B« (sin(a+0)-(E+C) •sina)/RI* 
13 

+ fcx3(0) 
M-   (sinQ-Otana+B'sina) (-2-B*sina)/R2 

+   (cosO-E-B'cosa)(-2*B'cosa)/R2 

13 J 

H< -4«B« (sin0-C'tanci+B*sina) (cosa)/R2 

L l 

-] +4*B-(sinG-C'tana+B'sina)     —e dQ 

!t  .,—rA (-2«B'sina)(xT-E-C)/R2    -(4B)   cosa(B'sina-Otana)«M/R2 

I   y4(Xl) [_ 12 12J 

2   (sin(a+G)-(E+C)sina) 

13 

1 
f 

• 

F 

• t  ^ ,3Tv  •   M-(B'sina-C tana) ?(4B) sina (Xl-E-O/R1* 
y4(Xl)      I 12. 

+ t   .«J    M-(-2B) «sina(8*sina-C«tana)+cosa(Xl-E-B-cosa)   • —2 
L JL 12 

+ t  „,— •  M-(Xl-E-B'cosa) (B'sina-C*tana) (4B*sina) (XI-E-O/R1*    }dXl 
x4(Xl)   [ 12j| 

• t mim.   • r(2'B«ir) (l+M«cos2a)l     + t  ,,_.  »fc>2*B*v*   sin2a 
y5(B)      L J x5(B) 

fB-H,C / B-H,C 

J " ty5(p)   .M.(^|)  sin2a dp  -J t^-   M  (JÄ)   .os2a dp 

0,B+H 0,B+H 

C . C 

J *_, ,   *M'sin2a    dp    + 
} y5(p) I 

+ | t  _.   ,   'M'sin2a    dp     +   I t  ,.   .   'M'cos2a    dp 
x5(p) 

0 J0 

FB5(B)   Cont. 
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Where 

A0     «     IT ,   H    «    1 

/ 

B-H,C 

0,B+H 
K(C)    d5 

B-H 

'   0 y^' B+H W 
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x,,£. 

Figure 1.    General Elastic Closed Domain. 

Figure 2.    Simple Anti-Plane Geometry. 
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Figure 3.    Modified Wedge Cracked Geometry. 

Figure 4a.   General Cracked Body. Figure 4b.  Modified Cracked Body. 
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Figure 5.     Bent Crack Geometry. 
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Figure 6.     Modified Bent Crack Geometry. 
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Figure 7.     Bent Crack Parametric Variable Definitions Normalized Geometry. 
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LINEAR APPROX 

»•••      a    * »* 
LINEAR APPROX 

• • i i H    » « i» 

APPROX.^ |"   y  M"   LINEAR APPROX 
APPROX. 

KEY 
Ml = NO. OF REF. PTS. ON T,, T5 

M2= NO. OF REF. PTS. ON T2,T4 

M3 = NO. OF REF. PTS. ON T3 

HI *C/(MI+.5) 

H2 = D/(M2+.5) 

H3 = 2ir/(M3+n 

Figure 8.    Reference Point Locations for Bent Crack Geometry. 
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Figure 10a. 

Figure 10c. Traction Loading on Benl Crack. 

Figure 10.  Principle of Linear Superposition. 
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D = .500 
C = .025 

Figure 11.  Crack Branching Angle a as a Function of Load Orientation Angle ß for Energy Criterion. 
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